Wang-Buzsaki Interneuron (Talathi et al., 2010)

 Download zip file 
Help downloading and running models
Accession:136308
The submitted code provides the relevant C++ files, matlabfiles and the data files essential to reproduce the figures in the JCNS paper titled Control of neural synchrony using channelrhodopsin-2: A computational study.
Reference:
1 . Talathi SS, Carney PR, Khargonekar PP (2011) Control of neural synchrony using channelrhodopsin-2: a computational study. J Comput Neurosci 31:87-103 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Abstract Wang-Buzsaki neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: C or C++ program;
Model Concept(s): Synchronization;
Implementer(s): Talathi Sachin [talathi at ufl.edu];
Search NeuronDB for information about:  Gaba;
/
JCNS-2010-CodeAndData
simul_lrn
CNlib
CVS
readme *
CN_absynapse.cc *
CN_absynapse.h *
CN_absynapseECplast1.cc *
CN_absynapseECplast1.h *
CN_absynapseECplast2.cc *
CN_absynapseECplast2.h *
CN_absynapseECplast3.cc *
CN_absynapseECplast3.h *
CN_DCInput.cc *
CN_DCInput.h *
CN_ECneuron.cc *
CN_ECneuron.h *
CN_HHneuron.cc *
CN_HHneuron.h *
CN_inputneuron.cc *
CN_inputneuron.cc~
CN_inputneuron.h *
CN_LPneuronAstrid.cc *
CN_LPneuronAstrid.h *
CN_LPneuronRafi4.cc *
CN_LPneuronRafi4.h *
CN_multifire_inputneuron.cc *
CN_multifire_inputneuron.h *
CN_neuron.cc *
CN_neuron.h *
CN_NeuronModel.cc *
CN_NeuronModel.h *
CN_Poissonneuron.cc *
CN_Poissonneuron.h *
CN_Rallsynapse.cc *
CN_Rallsynapse.h *
CN_rk65n.cc *
CN_rk65n.h *
CN_rk65n.o
CN_synapse.cc *
CN_synapse.h *
CN_synapseAstrid.cc *
CN_synapseAstrid.h *
CN_TimeNeuron.cc *
CN_TimeNeuron.h *
CN_Valneuron.cc *
CN_Valneuron.h *
CN_Valneuron2.cc *
CN_Valneuron2.h *
ids.h *
Makefile *
testCN *
testCN.cc *
testCN.o
                            
//--------------------------------------------------------------------------
// Author: Thomas Nowotny
//
// Institute: Institute for Nonlinear Dynamics
//            University of California San Diego
//            La Jolla, CA 92093-0402
//
// email to:  tnowotny@ucsd.edu
//
// initial version: 2005-08-17
//
//--------------------------------------------------------------------------


#ifndef CN_HHNEURON_H
#define CN_HHNEURON_H

#include "CN_neuron.h"
#include <cmath>

// parameters of the HH neuron, they are identical for all neurons used
// (and therefore made global to save memory)

#define HH_IVARNO 4
#define HH_PNO 7

double stdHH_p[HH_PNO]= {
  120.0,         // 0 - gNa: Na conductance in 1/(mOhms * cm^2)
  55.0,          // 1 - ENa: Na equi potential in mV
  36.0,          // 2 - gK: K conductance in 1/(mOhms * cm^2)
  -72.0,         // 3 - EK: K equi potential in mV
  0.3,           // 4 - gl: leak conductance in 1/(mOhms * cm^2)
  -50.0,         // 5 - El: leak equi potential in mV
  1.0          // 6 - Cmem: membr. capacity density in muF/cm^2
};

double *HH_p= stdHH_p;

char *HH_p_text[HH_PNO]= {
  "0 - gNa: Na conductance in 1/(mOhms * cm^2)",
  "1 - ENa: Na equi potential in mV",
  "2 - gK: K conductance in 1/(mOhms * cm^2)",
  "3 - EK: K equi potential in mV",
  "4 - gl: leak conductance in 1/(mOhms * cm^2)",
  "5 - El: leak equi potential in mV",
  "6 - Cmem: membr. capacity density in muF/cm^2"
};

double HH_INIVARS[HH_IVARNO]= {
  -60.0,                       // 0 - membrane potential E
  0.0529324,                   // 1 - prob. for Na channel activation m
  0.3176767,                   // 2 - prob. for not Na channel blocking h
  0.5961207                    // 3 - prob. for K channel activation n
};

char *HH_INIVARSTEXT[HH_IVARNO]= {
  "0 - membrane potential E",
  "1 - prob. for Na channel activation m",
  "2 - prob. for not Na channel blocking h",
  "3 - prob. for K channel activation n"
};

// the HH neuron class itself

class HHneuron: public neuron
{
 private:
  double Isyn;
  double _a, _b;
 public:
  HHneuron(int, double *);
  HHneuron(int, tnvector<int>, double *);
  ~HHneuron() { }
  inline virtual double E(double *);
  void derivative(double *, double *);
};

#endif