CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:138205
NEURON files from the paper: A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. by M. Migliore, I. De Blasi, D. Tegolo, R. Migliore, Neural Networks,(2011), doi:10.1016/j.neunet.2011.01.001. Starting from the experimentally supported assumption on hippocampal neurons we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a contextdependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for features recognition, leading to a distorted perception of objects.
Reference:
1 . Migliore M, De Blasi I, Tegolo D, Migliore R (2011) A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural Netw 24:552-9 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h; I Potassium;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Coincidence Detection; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Schizophrenia; Hallucinations;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h; I Potassium; Glutamate;
/
Schizophr
readme.txt
distr.mod *
Gfluct.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstims.mod *
average.hoc
c033-all-seeds.txt
condu.txt
fixnseg.hoc *
geo9068802.hoc
mosinit.hoc
schizopr.ses
sim_9068802-test.hoc
                            
: $Id: netstim.mod,v 1.1.1.1 2001/01/01 20:30:37 hines Exp $
: modified in such a way that the first event will never be before start
: M.Migliore Dec.2001
: modified in such a way to have the first event at start
: M.Migliore Sep. 2003

NEURON	{ 
  POINT_PROCESS NetStims
  RANGE y
  RANGE interval, number, start
  RANGE noise
}

PARAMETER {
	interval	= 10 (ms) <1e-9,1e9>: time between spikes (msec)
	number	= 10 <0,1e9>	: number of spikes
	start		= 50 (ms)	: start of first spike
	noise		= 0 <0,1>	: amount of randomeaness (0.0 - 1.0)
}

ASSIGNED {
	y
	event (ms)
	on
	end (ms)
}

PROCEDURE seed(x) {
	set_seed(x)
}

INITIAL {
	on = 0
	y = 0
	if (noise < 0) {
		noise = 0
	}
	if (noise > 1) {
		noise = 1
	}
	if (start >= 0 && number > 0) {
	: first spike occurs at start
		event = start
		net_send(event, 3)
	}
}	

PROCEDURE init_sequence(t(ms)) {
	if (number > 0) {
		on = 1
		event = t
		end = t + 1e-6 + invl(interval)*(number-1)
	}
}

FUNCTION invl(mean (ms)) (ms) {
	if (mean <= 0.) {
		mean = .01 (ms) : I would worry if it were 0.
	}
	if (noise == 0) {
		invl = mean
	}else{
		invl = (1. - noise)*mean + noise*mean*exprand(1)
	}
}

PROCEDURE event_time() {
	if (number > 0) {
		event = event + invl(interval)
	}
	if (event > end) {
		on = 0
	}
}

NET_RECEIVE (w) {
	if (flag == 0) { : external event
		if (w > 0 && on == 0) { : turn on spike sequence
			init_sequence(t)
			net_send(0, 1)
		}else if (w < 0 && on == 1) { : turn off spiking
			on = 0
		}
	}
	if (flag == 3) { : from INITIAL
		if (on == 0) {
			init_sequence(t)
			net_send(0, 1)
		}
	}
	if (flag == 1 && on == 1) {
		y = 2
		net_event(t)
		event_time()
		if (on == 1) {
			net_send(event - t, 1)
		}
		net_send(.1, 2)
	}
	if (flag == 2) {
		y = 0
	}
}

COMMENT
Presynaptic spike generator
---------------------------

This mechanism has been written to be able to use synapses in a single
neuron receiving various types of presynaptic trains.  This is a "fake"
presynaptic compartment containing a spike generator.  The trains
of spikes can be either periodic or noisy (Poisson-distributed)

Parameters;
   noise: 	between 0 (no noise-periodic) and 1 (fully noisy)
   interval: 	mean time between spikes (ms)
   number: 	mean number of spikes

Written by Z. Mainen, modified by A. Destexhe, The Salk Institute

Modified by Michael Hines for use with CVode
The intrinsic bursting parameters have been removed since
generators can stimulate other generators to create complicated bursting
patterns with independent statistics (see below)

Modified by Michael Hines to use logical event style with NET_RECEIVE
This stimulator can also be triggered by an input event.
If the stimulator is in the on=0 state and receives a positive weight
event, then the stimulator changes to the on=1 state and goes through
its entire spike sequence before changing to the on=0 state. During
that time it ignores any positive weight events. If, in the on=1 state,
the stimulator receives a negative weight event, the stimulator will
change to the off state. In the off state, it will ignore negative weight
events. A change to the on state immediately fires the first spike of
its sequence.

ENDCOMMENT