Mechanisms of magnetic stimulation of central nervous system neurons (Pashut et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:138321
Transcranial magnetic stimulation (TMS) is a widely applied tool for probing cognitive function in humans and is one of the best tools for clinical treatments and interfering with cognitive tasks. Surprisingly, while TMS has been commercially available for decades, the cellular mechanisms underlying magnetic stimulation remain unclear. Here we investigate these mechanisms using compartmental modeling. We generated a numerical scheme allowing simulation of the physiological response to magnetic stimulation of neurons with arbitrary morphologies and active properties. Computational experiments using this scheme suggested that TMS affects neurons in the central nervous system (CNS) primarily by somatic stimulation.
Reference:
1 . Pashut T, Wolfus S, Friedman A, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A (2011) Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput Biol 7:e1002022 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Squid axon;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Action Potential Initiation; Magnetic stimulation;
Implementer(s): Korngreen, Alon [alon.korngreen at gmail.com]; Pashut, Tamar [tamar.pashut at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell;
/
pashut2011
TwoDimensions
Neuron
cells
cad2.mod *
child.mod *
childa.mod *
epsp.mod *
it2.mod *
kaprox.mod *
kca.mod *
km.mod *
kv.mod *
na.mod *
SlowCa.mod *
xtra.mod *
alon.ses
BACModel.hoc
BACModel_mag.hoc
Display.ses *
magstim.hoc
                            
COMMENT

na.mod

Sodium channel, Hodgkin-Huxley style kinetics.  

Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)

qi is not well constrained by the data, since there are no points
between -80 and -55.  So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc

voltage dependencies are shifted approximately from the best
fit to give higher threshold

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX na
	USEION na READ ena WRITE ina
	RANGE m, h, gna, gbar
	GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
	RANGE minf, hinf, mtau, htau
	GLOBAL Ra, Rb, Rd, Rg
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 1000   	(pS/um2)	: 0.12 mho/cm2
	vshift = -10	(mV)		: voltage shift (affects all)
								
	tha  = -35	(mV)		: v 1/2 for act		(-42)
	qa   = 9	(mV)		: act slope		
	Ra   = 0.182	(/ms)		: open (v)		
	Rb   = 0.124	(/ms)		: close (v)		

	thi1  = -50	(mV)		: v 1/2 for inact 	
	thi2  = -75	(mV)		: v 1/2 for inact 	
	qi   = 5	(mV)	        : inact tau slope
	thinf  = -65	(mV)		: inact inf slope	
	qinf  = 6.2	(mV)		: inact inf slope
	Rg   = 0.0091	(/ms)		: inact (v)	
	Rd   = 0.024	(/ms)		: inact recov (v) 

	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	gna		(pS/um2)
	ena		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states
        gna = tadj*gbar*m*m*m*h
	ina = (1e-4) * gna * (v - ena)
} 

LOCAL mexp, hexp 

PROCEDURE states() {   :Computes state variables m, h, and n 
        trates(v+vshift)      :             at the current v and dt.
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
        VERBATIM
        return 0;
        ENDVERBATIM
}

PROCEDURE trates(v) {  
                      
        LOCAL tinc
        TABLE minf, mexp, hinf, hexp
	DEPEND dt, celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

        tadj = q10^((celsius - temp)/10)
        tinc = -dt * tadj

        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b

	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)
	minf = a*mtau

		:"h" inactivation 

	a = trap0(vm,thi1,Rd,qi)
	b = trap0(-vm,-thi2,Rg,qi)
	htau = 1/(a+b)
	hinf = 1/(1+exp((vm-thinf)/qinf))
}


FUNCTION trap0(v,th,a,q) {
	if (fabs(v/th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}