Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139421
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
Reference:
1 . Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus J Neurosci . [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I L high threshold; I A; I K; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Synchronization; Therapeutics; Pathophysiology; Schizophrenia; Information transfer; Brain Rhythms;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; NMDA; Glutamate; I L high threshold; I A; I K; I K,Ca; Gaba; Glutamate;
/
hpcdemo
readme.html
CA1ih.mod *
CA1ika.mod *
CA1ikdr.mod *
CA1ina.mod *
caolmw.mod *
capr.mod *
icaolmw.mod *
icapr.mod *
iholmkop.mod *
iholmw.mod *
ihpyrkop.mod *
kahppr.mod *
kaolmkop.mod *
kapyrkop.mod *
kcaolmw.mod *
kcpr.mod *
kdrbwb.mod *
kdrolmkop.mod *
kdrpr.mod *
kdrpyrkop.mod *
misc.mod *
MyExp2Syn.mod *
MyExp2SynAlpha.mod *
MyExp2SynBB.mod *
MyExp2SynNMDA.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
nafolmkop.mod *
nafpr.mod *
nafpyrkop.mod *
stats.mod
vecst.mod *
wrap.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.hoc *
geom.py *
grvec.hoc *
init.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.py
network.py *
nqs.hoc *
nqs_utils.hoc *
nrnoc.hoc *
params.py
pyinit.py *
run.py
screenshot.png
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
: $Id: CA1ika.mod,v 1.2 2010/12/01 05:06:07 samn Exp $ 
TITLE Ika CA1

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
}
 
NEURON {
  SUFFIX kacurrent
  NONSPECIFIC_CURRENT ika, ikad
  RANGE g, gd, e, ninf, ntau, ndinf, ndtau, linf, ltau
}
 
PARAMETER {
  celsius	(degC)
  g= 0.048	(mho/cm2)
  gd= 0		(mho/cm2)
  e= -90	(mV)
}
 
STATE {
  n
  nd : distal
  l
}
 
ASSIGNED {
  v	(mV)
  ika	(mA/cm2) 
  ikad	(mA/cm2)
  ninf
  ntau  (ms)
  ndinf
  ndtau (ms)
  linf
  ltau	(ms)
}

PROCEDURE iassign () {
  ika=g*n*l*(v-e)
  ikad=gd*nd*l*(v-e)
}
 
BREAKPOINT {
  SOLVE states METHOD cnexp
  iassign()
}
 
DERIVATIVE states { 
  rates(v)
  n'= (ninf- n)/ ntau
  l'= (linf- l)/ ltau
  nd'= (ndinf-nd)/ndtau
}

INITIAL { 
  rates(v)
  n = ninf
  l = linf
  iassign()
}

PROCEDURE rates(v (mV)) {
  LOCAL  a, b
  UNITSOFF
  a = exp(-0.038*(1.5+1/(1+exp(v+40)/5))*(v-11))
  b =	exp(-0.038*(0.825+1/(1+exp(v+40)/5))*(v-11))
  ntau=4*b/(1+a)
  if (ntau<0.1) {ntau=0.1}
  ninf=1/(1+a)
	
  a=exp(-0.038*(1.8+1/(1+exp(v+40)/5))*(v+1))
  b=exp(-0.038*(0.7+1/(1+exp(v+40)/5))*(v+1))
  ndtau=2*b/(1+a)
  if (ndtau<0.1) {ndtau=0.1}
  ndinf=1/(1+a)

  a = exp(0.11*(v+56))
  ltau=0.26*(v+50)
  if (ltau<2) {ltau=2}
  linf=1/(1+a)
  UNITSON
}