Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE SK2 multi-state model Cerebellum Golgi Cell Model

COMMENT

Author:Sergio Solinas, Lia Forti, Egidio DAngelo
Based on data from: Hirschberg, Maylie, Adelman, Marrion J Gen Physiol 1998
Last revised: May 2007

Published in:
             Sergio M. Solinas, Lia Forti, Elisabetta Cesana, 
             Jonathan Mapelli, Erik De Schutter and Egidio D`Angelo (2008)
             Computational reconstruction of pacemaking and intrinsic 
             electroresponsiveness in cerebellar golgi cells
             Frontiers in Cellular Neuroscience 2:2
ENDCOMMENT

NEURON{
	SUFFIX Golgi_SK2
	USEION ca READ cai
	USEION k READ ek WRITE ik 
	RANGE gkbar, g, ik, tcorr
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

PARAMETER {
	celsius  (degC)
	cai (mM)
	gkbar = 0.038 (mho/cm2)
	Q10 = 3
	diff = 3 (1) : diffusion factor

: rates ca-indipendent
	invc1 = 80e-3  ( /ms)
	invc2 = 80e-3  ( /ms)
	invc3 = 200e-3 ( /ms)

	invo1 = 1      ( /ms)
	invo2 = 100e-3 ( /ms)
	diro1 = 160e-3 ( /ms)
	diro2 = 1.2    ( /ms)

: rates ca-dipendent
	dirc2 = 200 ( /ms-mM )
	dirc3 = 160 ( /ms-mM )
	dirc4 = 80  ( /ms-mM )
}

ASSIGNED{ 
	v	(mV) 
	ek	(mV) 
	g	(mho/cm2) 
	ik	(mA/cm2) 
	invc1_t  ( /ms)
	invc2_t  ( /ms)
	invc3_t  ( /ms)
	invo1_t  ( /ms)
	invo2_t  ( /ms)
	diro1_t  ( /ms)
	diro2_t  ( /ms)
	dirc2_t  ( /ms)
	dirc3_t  ( /ms)
	dirc4_t  ( /ms)
	tcorr	 (1)

	dirc2_t_ca  ( /ms-mM)
	dirc3_t_ca  ( /ms-mM)
	dirc4_t_ca  ( /ms-mM)
} 

STATE {
	c1
	c2
	c3
	c4
	o1
	o2
}

BREAKPOINT{ 
	SOLVE kin METHOD sparse 
	g = gkbar*(o1+o2)	:(mho/cm2)
	ik = g*(v-ek)		:(mA/cm2)
} 

INITIAL{
	rate(celsius)
	SOLVE kin STEADYSTATE sparse
} 

KINETIC kin{ 
	rates(cai/diff) 
	~c1<->c2 (dirc2_t_ca, invc1_t) 
	~c2<->c3 (dirc3_t_ca, invc2_t) 
	~c3<->c4 (dirc4_t_ca, invc3_t) 
	~c3<->o1 (diro1_t, invo1_t) 
	~c4<->o2 (diro2_t, invo2_t) 
	CONSERVE c1+c2+c3+c4+o2+o1=1 
} 

FUNCTION temper (Q10, celsius (degC)) {
	temper = Q10^((celsius -23(degC)) / 10(degC)) 
}

PROCEDURE rates(cai(mM)){
	dirc2_t_ca = dirc2_t*cai
	dirc3_t_ca = dirc3_t*cai
	dirc4_t_ca = dirc4_t*cai 
} 

PROCEDURE rate (celsius(degC)) {
	tcorr = temper (Q10,celsius)
	invc1_t = invc1*tcorr  
	invc2_t = invc2*tcorr
	invc3_t = invc3*tcorr 
	invo1_t = invo1*tcorr 
	invo2_t = invo2*tcorr 
	diro1_t = diro1*tcorr 
	diro2_t = diro2*tcorr 
	dirc2_t = dirc2*tcorr
	dirc3_t = dirc3*tcorr
	dirc4_t = dirc4*tcorr
}