Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
////////////////////
//Model Parameters//
////////////////////

////////////////////
//MF->GrC synapses//
////////////////////
distances=5.5556 //distances between GrCs
CONNECTION_WEIGHT_NMDA_MFGrC=0.2244e-3 //synaptic weight
CONNECTION_WEIGHT_AMPA_MFGrC=2.6e-3
CONNECTION_PROB_MFGrC=1  
CONNECTION_THRESHOLD_MFGrC=-20 
CONNECTION_DELAY_MFGrC=2e-3  
diameter_MFGrC=3.5*distances      
k1_MFGrC=0.01  //decay parameter

////////////////////
//MF->GoC synapses//
////////////////////
CONNECTION_WEIGHT_AMPA_MFGoC=2.6e-3  
CONNECTION_PROB_MFGoC=0.3
CONNECTION_THRESHOLD_MFGoC=-20 
CONNECTION_DELAY_MFGoC=2e-3   
diameter_MFGoC=52.5*distances
k1_MFGoC=0.01  

/////////////////////
//GrC->GoC synapses//
//(PF synapses)    //
/////////////////////
CONNECTION_WEIGHT_AMPA_GrCGoC=2.6e-3  
CONNECTION_PROB_GrCGoC=0.5
CONNECTION_THRESHOLD_GrCGoC_=-20 
CONNECTION_DELAY_GrCGoC=2e-3   
CONNECTION_DELAY_AF=300e-3  
k1_GrCGoC=0  

////////////////////
//GoC>GrC synapses//
////////////////////
CONNECTION_WEIGHT_GABAa1_GoCGrC=1.4e-3  
CONNECTION_WEIGHT_GABAa2_GoCGrC=0*1.4e-3  
CONNECTION_PROB_GoCGrC=1
CONNECTION_THRESHOLD_GoCGrC=-20 
CONNECTION_DELAY_GoCGrC=2e-3   
diameter_GoCGrC=10.5*distances 
k1_GoCGrC=0.01

/////////////////////////
//GoC>GoC Gap junctions//
////////////////////////

Ggap=1.5e-3  
CONNECTION_PROB_GoCGoC=1
k1_GoCGoC =0.03

//////////////////////
//Network Layers    //
//////////////////////

//load cells:
load_file("granule_template.hoc") //GrC
load_file("MF_template.hoc") //MF
load_file("Golgi_template.hoc") //GoC

//////////////////////////
//MF (Mossy Fibre) Layer//
//////////////////////////

scale=3  
objref prob        
prob=new Random()
NETDIM_Xa=90
NETDIM_Ya=10
NETDIM_Za=1
Dxa=scale*distances  
Dya=scale*distances
Dza=1
xa=0
ya=0
za=0

NumberCellsa=NETDIM_Xa*NETDIM_Ya*NETDIM_Za

variabilitya=20 
percentagea=variabilitya/100  
min=-Dxa*percentagea 
max=Dxa*percentagea

objref fiber[NumberCellsa]	//define objects for cells
l=0
for i=0, NETDIM_Xa-1 {
 for j=0, NETDIM_Ya-1 {
  for k=0, NETDIM_Za-1 {
  xprob=prob.uniform(min,max)
  yprob=prob.uniform(min,max)
 
   fiber[l]=new fibre(xprob+xa+i*Dxa,yprob+ya+j*Dya,za+k*Dza)  //create objects for cells
   fiber[l].Presynapse fiber[l].nclist.append(new NetCon(fiber[l].StimTrigger,fiber[l].syn,0.5,0,0.01)) 

   l=l+1
  }
 }
}

/////////////////////////////////////
//GrC (Granule Cell) Layer         //
/////////////////////////////////////

NETDIM_Xb= scale*NETDIM_Xa
NETDIM_Yb= scale*NETDIM_Ya
NETDIM_Zb=1
Dxb=distances	
Dyb=distances
Dzb=1
xb=0				
yb=0
zb=150

NumberCellsb=NETDIM_Xb*NETDIM_Yb*NETDIM_Zb

variabilityb=20 
percentageb=variabilityb/100  
min=-Dxb*percentageb 
max=Dxb*percentageb


objref GrC[NumberCellsb]	//define objects for cells
l=0
for i=0, NETDIM_Xb-1 {
 for j=0, NETDIM_Yb-1 {
  for k=0, NETDIM_Zb-1 {
  xprob=prob.uniform(min,max)
  yprob=prob.uniform(min,max)
  zprob=prob.uniform(min,0)
  GrC[l]=new grc(xprob+xb+i*Dxb,yprob+yb+j*Dyb,zprob+zb+k*Dzb)  //create objects for cells

 //soma diameter randomization
 diameter=GrC[l].soma.diam
 bprob=prob.uniform(-diameter*(variabilityb/100), diameter*(variabilityb/100))
  GrC[l].soma.diam= diameter +bprob

 //v_leak randomization
 v_leak=-16.5 
 dprob=prob.uniform(-v_leak*(variabilityb/100),v_leak*(variabilityb/100))
 GrC[l].soma.el_GRC_LKG1=v_leak+dprob
 l=l+1
  }
 }
}

//////////////////////////
//GoC (Golgi Cell) Layer//
//////////////////////////

scaled=2  
NETDIM_Xd=NETDIM_Xa/scaled
NETDIM_Yd=NETDIM_Ya/scaled
NETDIM_Zd=1

Dxd=scale*distances*scaled	
Dyd=scale*distances*scaled
Dzd=1
xd=0				
yd=0
zd=200

NumberCellsd=NETDIM_Xd*NETDIM_Yd*NETDIM_Zd

variabilityd=20  
percentaged= variabilityd/100  
min=-Dxd* percentaged 
max=Dxd* percentaged

Dxd=Dxd-2*(max/(NETDIM_Xd-1))
Dyd=Dyd-2*(max/(NETDIM_Xd-1))

xd=xd+max
yd=yd+max

objref GoC[NumberCellsd]	//define objects for cells
l=0
for i=0, NETDIM_Xd-1 {
 for j=0, NETDIM_Yd-1 {
  for k=0, NETDIM_Zd-1 {
  xprob=prob.uniform(min,max)
  yprob=prob.uniform(min,max)
  GoC[l]=new Goc(xprob+xd+i*Dxd,yprob+yd+j*Dyd,zd+k*Dzd)  //create objects for cells
  
v_leak=-55 
dprob=prob.uniform(-v_leak*(variabilityd/100),v_leak*(variabilityd/100))

GoC[l].soma.el_Golgi_lkg=v_leak+dprob
GoC[l].dend[0].el_Golgi_lkg=v_leak+dprob
GoC[l].dend[1].el_Golgi_lkg=v_leak+dprob
GoC[l].dend[2].el_Golgi_lkg=v_leak+dprob
//GoC[l].axon.el_Golgi_lkg=v_leak+dprob
GoC[l].soma.ko(0.5)=5
GoC[l].soma.ki(0.5)=140
GoC[l].soma.nao(0.5)=145
GoC[l].soma.nai(0.5)=5

  diameter =GoC[l].soma.diam
  dprob=prob.uniform(-diameter*(variabilityd/100), diameter*(variabilityd/100))
  GoC[l].soma.diam= diameter+dprob
   l=l+1
  }
 }
}

////////////////////////
//CONNECT CELL OBJECTS//
////////////////////////

objref prob
prob=new Random()

////////////////////
//MF->GrC synapses//
////////////////////

for i=0, NumberCellsa-1{
 for j=0, NumberCellsb-1 {
  aprob=prob.uniform(0,1)
  if ((aprob<= CONNECTION_PROB_MFGrC)) { 
    access fiber[i].Presynapse
    xi=x3d(0)
    yi=y3d(0)
    zi=0   
 
    access GrC[j].soma
    xj=x3d(0)
    yj=y3d(0)
    zj=0   
 
    adist =((xi-xj)^2+(yi-yj)^2+(zi-zj)^2)^(1/2)             			
    if (adist< diameter_MFGrC) {
   fiber[i].Presynapse GrC[j].nclist.append(new NetCon(&fiber[i].Presynapse.v(0.5),GrC[j].synAMPA, CONNECTION_THRESHOLD_MFGrC, CONNECTION_DELAY_MFGrC*adist,CONNECTION_WEIGHT_AMPA_MFGrC*(E^(-k1_MFGrC*adist))))
   fiber[i].Presynapse GrC[j].nclist.append(new NetCon(&fiber[i].Presynapse.v(0.5),GrC[j].synNMDA, CONNECTION_THRESHOLD_MFGrC, CONNECTION_DELAY_MFGrC*adist,CONNECTION_WEIGHT_NMDA_MFGrC*(E^(-k1_MFGrC*adist))))  
     }
  }
 }
}

////////////////////
//MF->GoC synapses//
////////////////////

for i=0, NumberCellsa-1{
 for j=0, NumberCellsd-1 {
  aprob=prob.uniform(0,1)
  if ((aprob<= CONNECTION_PROB_MFGoC)) { 
    access fiber[i].Presynapse
    xi=x3d(0)
    yi=y3d(0)
    zi=0  
 
    access  GoC[j].soma
    xj=x3d(0)
    yj=y3d(0)
    zj=0   
 
    adist =((xi-xj)^2+(yi-yj)^2+(zi-zj)^2)^(1/2)                 			
    if (adist< diameter_MFGoC) {  
  fiber[i].Presynapse GoC[j].nclist.append(new NetCon(&fiber[i].Presynapse.v(0.5),GoC[j].synAMPA1, CONNECTION_THRESHOLD_MFGoC, CONNECTION_DELAY_MFGoC*adist,CONNECTION_WEIGHT_AMPA_MFGoC*(E^(-k1_MFGoC*adist))))
     }
  }
 }
}

/////////////////////
//GrC->GoC synapses//
//(PF synapses)    //
/////////////////////

for i=0, NumberCellsb-1{
 for j=0, NumberCellsd-1 {
  aprob=prob.uniform(0,1)
  //aprob=1
  if ((aprob<= CONNECTION_PROB_GrCGoC)) {  
    access GrC[i].soma 
    xi=x3d(0)
    yi=y3d(0)
    zi=0   
    access GoC[j].soma 
    xj=x3d(0)
    yj=y3d(0)
    zj=0  
  
   adist =((xi-xj)^2+(yi-yj)^2+(zi-zj)^2)^(1/2)               			
   if (abs(xi-xj)<=2500 && abs(yi-yj)<=(2.6+100)) {
   GrC[i].soma GoC[j].nclist.append(new NetCon(&GrC[i].soma.v(0.5),GoC[j].synAMPA2, CONNECTION_THRESHOLD_GrCGoC_, CONNECTION_DELAY_GrCGoC*adist+CONNECTION_DELAY_AF,CONNECTION_WEIGHT_AMPA_GrCGoC*(E^(-k1_GrCGoC*adist))))
     }
  }
 }
}

////////////////////
//GoC>GrC synapses//
////////////////////

for i=0, NumberCellsd-1{
 for j=0, NumberCellsb-1 {
  aprob=prob.uniform(0,1)
  //aprob=1
  if ((aprob<= CONNECTION_PROB_GoCGrC)) { 
    access  GoC[i].soma  //GoC
    xi=x3d(0)
    yi=y3d(0)
    zi=0   
 
    access GrC[j].soma 
    xj=x3d(0)
    yj=y3d(0)
    zj=0   
 
    adist =((xi-xj)^2+(yi-yj)^2+(zi-zj)^2)^(1/2)             			
   if (adist< diameter_GoCGrC) {  
   GoC[i].soma GrC[j].nclist.append(new NetCon(&GoC[i].soma.v(0.5),GrC[j].synGABAa1, CONNECTION_THRESHOLD_GoCGrC, CONNECTION_DELAY_GoCGrC*adist,CONNECTION_WEIGHT_GABAa1_GoCGrC*(E^(-k1_GoCGrC*adist))))
   GoC[i].soma GrC[j].nclist.append(new NetCon(&GoC[i].soma.v(0.5),GrC[j].synGABAa2, CONNECTION_THRESHOLD_GoCGrC, CONNECTION_DELAY_GoCGrC*adist,CONNECTION_WEIGHT_GABAa2_GoCGrC*(E^(-k1_GoCGrC*adist))))
     }
  }
 }
}

/////////////////////////
//GoC>GoC Gap junctions//
////////////////////////

objref gpre[255*255],gpost[255*255]
objref index
index=new Matrix(255,255)

proc gapjunctions() {
 
contador=0
for i=0,  NumberCellsd-1{
for j=0, NumberCellsd-1 {
index.x[i][j]=contador
contador=contador+1
}
}

variabilitye=60  
percentagee= variabilitye/100 
min=-$3* percentagee 
max=$3* percentagee

for i=0, $4-1{
for j=i+1, $4-1 {
  aprob=1
  if ((aprob<= $1) && (i!=j)) {  
    access GoC[i].soma 
    xi=x3d(0)
    yi=y3d(0)
    zi=0   
 
    access GoC[j].soma 
    xj=x3d(0)
    yj=y3d(0)
    zj=0  
 
    adist =((xi-xj)^2+(yi-yj)^2+(zi-zj)^2)^(1/2)          			

GoC[i].soma gpre[index.getval(i,j)]=new Gap(0.5)
GoC[j].soma gpost[index.getval(i,j)]=new Gap(0.5)
setpointer gpre[index.getval(i,j)].vnb, GoC[j].soma.v(0.5)
setpointer gpost[index.getval(i,j)].vnb, GoC[i].soma.v(0.5)

gprob=prob.uniform(min,max) 

gpre[index.getval(i,j)].g=($3+gprob)*E^(-$2*adist)
gpost[index.getval(i,j)].g=($3+gprob)*E^(-$2*adist)
  }
 }
}
}

if (GJ==1) {
 gapjunctions(CONNECTION_PROB_GoCGoC, k1_GoCGoC, Ggap, NumberCellsd)
}


/////////////////////////////
//MF stimulation procedures//
////////////////////////////

//clear stim buffers
proc cleanMF() {     
for(i=0;i<=NumberCellsa-1;i=i+1) {
   fiber[i].StimTrigger.start=0
   fiber[i].StimTrigger.interval=0
   fiber[i].StimTrigger.number=0
   fiber[i].StimTrigger.noise=0
}
}

proc stimulus() {

NETIN_SP_START=$1 
MFfreq=$2
NETIN_SP_NUMBER=50*$3 
SEED=$4
NETIN_SP_INTERVAL=1000/MFfreq 
NETIN_SP_NOISE=1

for i = 0, NumberCellsa-1 {
   fiber[i].StimTrigger.start=NETIN_SP_START
   fiber[i].StimTrigger.interval=NETIN_SP_INTERVAL
   fiber[i].StimTrigger.number=NETIN_SP_NUMBER
   fiber[i].StimTrigger.noise=NETIN_SP_NOISE
   fiber[i].StimTrigger.seed(SEED)
}
}

////////////////////////////////////////
//Setting up for Saving Spiking Events//
///////////////////////////////////////

//generate matrix and send the data to them
objref GoCMatrixS, GrCMatrixS, MFMatrixS 
GoCMatrixS=new Matrix() 
GrCMatrixS=new Matrix() 
MFMatrixS=new Matrix() 

objref sav_MFMatrixS,sav_GrCMatrixS,sav_GoCMatrixS
sav_MFMatrixS=new File()
sav_GrCMatrixS=new File()
sav_GoCMatrixS=new File()

//Open recording Files
sav_MFMatrixS.wopen("MFMatrixS.dat")
sav_GrCMatrixS.wopen("GrCMatrixS.dat")
sav_GoCMatrixS.wopen("GoCMatrixS.dat")


//Data for Raster Plots
//GoC
objref timevec1, idvec1, recncs1, tobj1, nil1
timevec1 = new Vector()
idvec1 = new Vector()
recncs1 = new List()
for i=0, NumberCellsd-1 {
  GoC[i].soma tobj1 = new NetCon(&v(0.5), nil1)
  tobj1.record(timevec1, idvec1, i+1) 
  recncs1.append(tobj1)
}
objref tobj1 

//GrC
objref timevec2, idvec2, recncs2, tobj2, nil2
timevec2 = new Vector()
idvec2 = new Vector()
recncs2 = new List()
for i=0,NumberCellsb-1 {
  GrC[i].soma tobj2 = new NetCon(&v(0.5), nil2)
  tobj2.record(timevec2, idvec2, i+1) 
  recncs2.append(tobj2)
}
objref tobj2