Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Low threshold calcium current Cerebellum Golgi Cell Model
:
:   Ca++ current responsible for low threshold spikes (LTS)
:   RETICULAR THALAMUS
:   Differential equations
:
:   Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
:   The kinetics is described by standard equations (NOT GHK)
:   using a m2h format, according to the voltage-clamp data
:   (whole cell patch clamp) of Huguenard & Prince, J Neurosci.
:   12: 3804-3817, 1992.  The model was introduced in Destexhe et al.
:   J. Neurophysiology 72: 803-818, 1994.
:   See http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca
:
:    - Kinetics adapted to fit the T-channel of reticular neuron
:    - Q10 changed to 5 and 3
:    - Time constant tau_h fitted from experimental data
:    - shift parameter for screening charge
:
:   ACTIVATION FUNCTIONS FROM EXPERIMENTS (NO CORRECTION)
:
:   Reversal potential taken from Nernst Equation
:
:   Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
        SUFFIX Golgi_Ca_LVA
        USEION ca2 READ ca2i, ca2o WRITE ica2 VALENCE 2
        RANGE g, gca2bar, m_inf, tau_m, h_inf, tau_h, shift
	RANGE ica2, m ,h, ca2rev
	RANGE phi_m, phi_h
	RANGE v0_m_inf,v0_h_inf,k_m_inf,k_h_inf,C_tau_m
	RANGE A_tau_m,v0_tau_m1,v0_tau_m2,k_tau_m1,k_tau_m2
	RANGE C_tau_h ,A_tau_h ,v0_tau_h1,v0_tau_h2,k_tau_h1 ,k_tau_h2

    }

UNITS {
        (molar) = (1/liter)
        (mV) =  (millivolt)
        (mA) =  (milliamp)
        (mM) =  (millimolar)

        FARADAY = (faraday) (coulomb)
        R = (k-mole) (joule/degC)
}

PARAMETER {
        v               (mV)
        celsius (degC)
        eca2 (mV)
	   gca2bar  = 2.5e-4 (mho/cm2)
        shift   = 2     (mV)            : screening charge for Ca_o = 2 mM
        ca2i  (mM)           : adjusted for eca=120 mV
        ca2o  (mM)
	
	v0_m_inf = -50 (mV)
	v0_h_inf = -78 (mV)
	k_m_inf = -7.4 (mV)
	k_h_inf = 5.0  (mv)
	
	C_tau_m = 3
	A_tau_m = 1.0
	v0_tau_m1 = -25 (mV)
	v0_tau_m2 = -100 (mV)
	k_tau_m1 = 10 (mV)
	k_tau_m2 = -15 (mV)
	
	C_tau_h = 85
	A_tau_h = 1.0
	v0_tau_h1 = -46 (mV)
	v0_tau_h2 = -405 (mV)
	k_tau_h1 = 4 (mV)
	k_tau_h2 = -50 (mV)
	
    }
    

STATE {
        m h
}

ASSIGNED {
        ica2     (mA/cm2)
        ca2rev   (mV)
	g        (mho/cm2) 
        m_inf
        tau_m   (ms)
        h_inf
        tau_h   (ms)
        phi_m
        phi_h
}

BREAKPOINT {
        SOLVE ca2state METHOD cnexp
        ca2rev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (ca2o/ca2i)
        g = gca2bar * m*m*h
        ica2 = gca2bar * m*m*h * (v-ca2rev)
}

DERIVATIVE ca2state {
        evaluate_fct(v)

        m' = (m_inf - m) / tau_m
        h' = (h_inf - h) / tau_h
}

UNITSOFF
INITIAL {
:
:   Activation functions and kinetics were obtained from
:   Huguenard & Prince, and were at 23-25 deg.
:   Transformation to 36 deg assuming Q10 of 5 and 3 for m and h
:   (as in Coulter et al., J Physiol 414: 587, 1989)
:

        evaluate_fct(v)
        m = m_inf
        h = h_inf
}

PROCEDURE evaluate_fct(v(mV)) { 
:
:   Time constants were obtained from J. Huguenard
:
        phi_m = 5.0 ^ ((celsius-24)/10)
        phi_h = 3.0 ^ ((celsius-24)/10)
	
	TABLE m_inf, tau_m, h_inf, tau_h
	DEPEND shift, phi_m, phi_h FROM -100 TO 30 WITH 13000 
        m_inf = 1.0 / ( 1 + exp((v + shift - v0_m_inf)/k_m_inf) )
        h_inf = 1.0 / ( 1 + exp((v + shift - v0_h_inf)/k_h_inf) )
	
        tau_m = ( C_tau_m + A_tau_m / ( exp((v+shift - v0_tau_m1)/ k_tau_m1) + exp((v+shift - v0_tau_m2)/k_tau_m2) ) ) / phi_m
        tau_h = ( C_tau_h + A_tau_h / ( exp((v+shift - v0_tau_h1)/k_tau_h1) + exp((v+shift - v0_tau_h2)/k_tau_h2) ) ) / phi_h
}
UNITSON