Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139657
This is a model of neurons in the brainstem superior paraolivary nucleus (SPN), which produce very salient offset firing during sound stimulation. Rebound offset firing is triggered by IPSPs coming from the medial nucleus of the trapezoid body (MNTB). This model shows that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential, combined with a large hyperpolarization- activated non-specific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). As a result, tiny gaps in sound stimuli of just 3-4ms can elicit reliable APs that signal such brief offsets.
Reference:
1 . Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID (2011) The sound of silence: ionic mechanisms encoding sound termination. Neuron 71:911-25 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Superior paraolivary nucleus neuron;
Channel(s): I T low threshold; I h;
Gap Junctions:
Receptor(s): Glycine;
Gene(s): HCN Cnga1;
Transmitter(s): Glycine;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Rebound firing;
Implementer(s): Hennig, Matthias H [mhhennig at gmail.com];
Search NeuronDB for information about:  Glycine; I T low threshold; I h; Glycine;
/
Kopp-Scheinpflug2011
index.html
readme.txt
ht.mod *
lt.mod *
lva.mod
mhh_Gfluct.mod
netstims.mod *
sjg_ih.mod
sjg_na.mod
trigstim.mod *
allgraphs.hoc
conductance_noise.hoc
current_inj.hoc
mosinit.hoc
run_spn_model.hoc
simcontrols.hoc
spn_neuron.hoc
spnmodel1.png
synapses.hoc
                            
TITLE Fluctuating conductances

COMMENT
-----------------------------------------------------------------------------

	Fluctuating conductance model for synaptic bombardment
	======================================================
	
This implementation models only excitatory synaptic input, and is based on the model described in:

Rudolph M, Destexhe A (2005) An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Comput 17:2301-15

Original code:
http://senselab.med.yale.edu/ModelDb/showmodel.asp?model=64259&file=\NCnote\Gfluct.mod
  

IMPLEMENTATION

  This mechanism is implemented as a nonspecific current defined as a
  point process.


PARAMETERS

  The mechanism takes the following parameters:

     E_e (mV)		: reversal potential of excitatory conductance

     g_e0 (umho)	: average excitatory conductance

     std_e (umho)	: standard dev of excitatory conductance

     tau_e (ms)		: time constant of excitatory conductance

  A. Destexhe, Laval University, 1999

  Trivial modifications by:
  Matthias H. Hennig, University of Edinburgh, 2011
  
-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS mhh_Gfluct
	RANGE g_e, E_e, g_e0, g_e1
	RANGE std_e, tau_e, D_e
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp) 
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	dt		(ms)

	E_e	= 0 	(mV)	: reversal potential of excitatory conductance
	g_e0	= 0.000001 (umho)	: average excitatory conductance
	std_e	= 0.0002 (umho)	: standard dev of excitatory conductance
	tau_e	= 2	(ms)	: time constant of excitatory conductance
}

ASSIGNED {
	v	(mV)		: membrane voltage
	i 	(nA)		: fluctuating current
	g_e	(umho)		: total excitatory conductance
	g_e1	(umho)		: fluctuating excitatory conductance
	D_e	(umho umho /ms) : excitatory diffusion coefficient
	exp_e
	amp_e	(umho)
}

INITIAL {
	g_e1 = 0
	if(tau_e != 0) {
		D_e = 2 * std_e * std_e / tau_e
		exp_e = exp(-dt/tau_e)
		amp_e = std_e * sqrt( (1-exp(-2*dt/tau_e)) )
	}
}

BREAKPOINT {
	SOLVE oup
	if(tau_e==0) {
	   g_e = std_e * normrand(0,1)
	}
	g_e = g_e0 + g_e1
	i = g_e * (v - E_e)
}


PROCEDURE oup() {		: use Scop function normrand(mean, std_dev)
   if(tau_e!=0) {
	g_e1 =  exp_e * g_e1 + amp_e * normrand(0,1)
   }
}


PROCEDURE new_seed(seed) {		: procedure to set the seed
	set_seed(seed)
	VERBATIM
	  printf("Setting random generator with seed = %g\n", _lseed);
	ENDVERBATIM
}