A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140249
This model for dLGN interneurons is presented in two parameterizations (P1 & P2), which were fitted to current-clamp data from two different interneurons (IN1 & IN2). The model qualitatively reproduces the responses in IN1 & IN2 under 8 different experimental condition, and quantitatively reproduces the I/O-relations (#spikes elicited as a function of injected current).
Reference:
1 . Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M (2011) A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS Comput Biol 7:e1002160 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus lateral geniculate nucleus interneuron;
Channel(s): I L high threshold; I T low threshold; I CAN; I Sodium; I Mixed; I Potassium; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Active Dendrites; Detailed Neuronal Models; Rebound firing;
Implementer(s): Halnes, Geir [geir.halnes at nmbu.no];
Search NeuronDB for information about:  I L high threshold; I T low threshold; I CAN; I Sodium; I Mixed; I Potassium; I_AHP;
/
dLGN_modelDB
readme.html
Cad.mod *
HH_traub.mod *
iahp.mod *
iar.mod *
ical.mod *
Ican.mod *
it2.mod *
091008A2.hoc *
fixnseg.hoc *
INmodel.hoc
INmodel.ses
mosinit.hoc
Parameters1.hoc
Parameters2.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
                            
// dLGN interneuron model
// Geir Halnes, Norwegian University of Life Sciences, June 2011

load_file("nrngui.hoc")
cvode_active(1)

load_file("091008A2.hoc") // uses Heggelund morphoplogy
xopen("fixnseg.hoc")
objref stim, hold

dt = 0.1
celsius = 36.0  
actdends = 1

load_file("Parameters1.hoc")
//load_file("Parameters2.hoc")


// Channel distribution (ratio: g_dend/g_soma)
nadendfac = 0.1
ihdendfac = 1
ldendfac = 0.25
iahpdendfac = 0.1
itinc = 2.39/60
icaninc = itinc

// Insert channels:
forall {insert pas e_pas=Vrest g_pas=1/Rm Ra=rall cm=cap}
forall {
	insert iar ghbar_iar=ghbar*ihdendfac
	insert Cad
	insert ical
	insert it2
	insert iahp
	insert hh2 ena=50 ek=-90
	insert ican
}


// Initialize
proc init() {
	access soma
      forall {v=Vrest e_pas=Epas}
      forall {insert pas e_pas=Epas g_pas=1/Rm Ra=rall cm=cap}

forall {
	gnabar_hh2 = gna*nadendfac  vtraubNa_hh2 = nash
      gkbar_hh2 = 0.005 vtraubK_hh2 = kdrsh
	pcabar_ical = gcal*ldendfac
	gkbar_iahp = gahp*iahpdendfac
	ghbar_iar = ghbar*ihdendfac
	gcabar_it2 = gcat*(1 + itinc*distance(1))*actdends
	gbar_ican = gcanbar*(1 + itinc*distance(1))*actdends
}

soma {
	gnabar_hh2 = gna vtraubNa_hh2 = nash 
	gkbar_hh2 = gkdr vtraubK_hh2 = kdrsh
	gcabar_it2 = gcat
	pcabar_ical = gcal
	gkbar_iahp = gahp
	ghbar_iar = ghbar
	gbar_ican = gcanbar
}

	finitialize(Vrest)
      fcurrent()
      forall {taur_Cad = catau} // Calcium decay needs to know the the volume it enters
	cvode.re_init()
}

access soma
freq=50
geom_nseg()
tot=0
forall {tot=tot+nseg}
distance()
print "total # of segments (50Hz): ",tot

stim= new IClamp(.5)
stim.del=1000
stim.dur=900
stim.amp=0.055

hold= new IClamp(.5)
hold.del=0
hold.dur=3000
hold.amp=0.0



/////////////////////////////////////////////////////////
// SESSIONS, FIGURES AND PANELS:
load_file("INmodel.ses")
PlotShape[0].exec_menu("Shape Plot")
PlotShape[0].show(0)