Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140828
Compartmental model of a layer 2/3 pyramidal cell in the rat somatosensory cortex, exploring NMDA-dependent sensitivity to the temporal sequence of synaptic activation.
Reference:
1 . Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671-5 [PubMed]
2 . Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885-92 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Synaptic Integration; Direction Selectivity;
Implementer(s):
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; NMDA; Glutamate;
/
Branco_2010
mod.files
ar.mod
ca.mod *
cad.mod *
caL3d.mod *
CaT.mod *
h.mod *
HH2.mod *
inwardrect.mod
kca.mod *
kir.mod *
km.mod *
kv.mod *
na.mod *
NMDA_Mg_T.mod *
release_BMK.mod *
                            
TITLE Kir potassium current for nucleus accumbens (IRK1 = Kir 2.1 - see Mermelstein)

COMMENT 

Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ (1998) Inwardly
rectifying potassium (IRK) currents are correlated with IRK subunit
expression in rat nucleus accumbens medium spiny neurons. J Neurosci
18:6650-6661.

Uchimura N, Cherubini E, North RA (1989).  Inward rectification
in rat nucleus accumbens neurons. J Neurophysiol 62, 1280-1286.

Kubo Y, Murata Y (2001).  Control of rectification and permeation by two
distinct sites after the second transmembrane region in Kir2.1 K+
channel. J Physiol 531, 645-660.

Hayashi H, Fishman HM (1988). Inward rectifier K+ channel kinetics from
analysis of the complex conductance of aplysia neuronal membrane.
Biophys J 53, 747-757. 

Jason Moyer 2004 jtmoyer@seas.upenn.edu
ENDCOMMENT


UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
        (molar) = (1/liter)
        (mM) = (millimolar)
}
 
NEURON {
        SUFFIX kir
        USEION k READ ek WRITE ik
        RANGE  gkbar, ik, mvhalf, mslope, mshift, qfact
}
 
PARAMETER {
	gkbar  = 0.00015 		(S/cm2)	: 

	mvhalf = -52		(mV)	: fit to Hayashi 1988 fig 14; minf = alpha/(alpha+beta)
	mslope = 13		(mV)	: fit to Hayashi 1988 fig 14
	mshift = 30			(mV)	: fit to Kubo 2001 fig 2B left - with ek = -84.3,
						:  mshift can range from 20 to 30 to fit slope of IR
	qfact = 0.5				: match in vitro data
}
 
STATE { m }
 
ASSIGNED {
		ki				(mM)
		ko				(mM)
        v 				(mV)
        ik 				(mA/cm2)
        gk				(S/cm2)
        minf		
        ek				(mV)
   }
 
BREAKPOINT {
        SOLVE state METHOD cnexp
        gk = gkbar * m
        ik = gk * ( v - ek )
}
  
INITIAL {
	rates(v)
	m = minf
}

FUNCTION_TABLE taumkir (v(mV))  (ms)		: Hayashi

DERIVATIVE state { 
        rates(v)
        m' = (minf - m) / ( taumkir(v)/qfact )
}
 
PROCEDURE rates( v(mV) ) {  : Boltzman adjusted to give proper Erev dependency 
	TABLE minf DEPEND mvhalf, mshift, mslope
		FROM -200 TO 200 WITH 201
			minf = 1  /  ( 1 + exp( (v - mvhalf + mshift) / mslope) )
}