Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:141273
"Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. ..."
Reference:
1 . Vierling-Claassen D, Cardin JA, Moore CI, Jones SR (2010) Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Front Hum Neurosci 4:198 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I T low threshold; I K; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Detailed Neuronal Models; Brain Rhythms; Evoked LFP; Touch;
Implementer(s): Vierling-Claassen, Dorea ;
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,t; I T low threshold; I K; I M; I h; I K,Ca; I Calcium;
/
Vierling-ClaassenEtAl2010
batchsims
confiles
README
ar.mod
ca.mod *
cad.mod *
cat.mod
fdsexp2syn.mod *
Gfluct.mod *
gnetstim.mod
kca.mod *
km.mod *
kv.mod *
na_2.mod
light_batch_FSdrive.hoc
light_genconn_DB.m
lightgamma_drive_DB.hoc
lightgamma_init_DB.hoc
lightgamma_LFP_DB.hoc
lightgamma_localconn_DB.hoc
lightgamma_network_DB.hoc
lightgamma_noise_DB.hoc
lightgamma_wiring_DB.hoc
lightgamma_wiring_proc_DB.hoc
                            
:26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
:    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal
 



TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE ca
	GLOBAL depth,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)
}


PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 200	(ms)		: rate of calcium removal
	cainf	= 100e-6(mM)
	cai		(mM)
}

STATE {
	ca		(mM) <1e-5>
}

INITIAL {
	ca = cainf
	cai = ca
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD euler
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca
}