Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:141273
"Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. ..."
Reference:
1 . Vierling-Claassen D, Cardin JA, Moore CI, Jones SR (2010) Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Front Hum Neurosci 4:198 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I T low threshold; I K; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Detailed Neuronal Models; Brain Rhythms; Evoked LFP; Touch;
Implementer(s): Vierling-Claassen, Dorea ;
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,t; I T low threshold; I K; I M; I h; I K,Ca; I Calcium;
/
Vierling-ClaassenEtAl2010
batchsims
confiles
README
ar.mod
ca.mod *
cad.mod *
cat.mod
fdsexp2syn.mod *
Gfluct.mod *
gnetstim.mod
kca.mod *
km.mod *
kv.mod *
na_2.mod
light_batch_FSdrive.hoc
light_genconn_DB.m
lightgamma_drive_DB.hoc
lightgamma_init_DB.hoc
lightgamma_LFP_DB.hoc
lightgamma_localconn_DB.hoc
lightgamma_network_DB.hoc
lightgamma_noise_DB.hoc
lightgamma_wiring_DB.hoc
lightgamma_wiring_proc_DB.hoc
                            
//*************
// RS noise for Frontiers submission  Long trials 4-7-10 4-14-10, also 4-22-10_5 and 4-22-10_14
//*************
// As in trials 3/22/10_5 and 3-22-10_14
// Process to put higher noise into compartments 5,6 (most distal compartments, representing input from distal areas)
// Avg rate for RS in absence of input is 17.79 Hz, see Lab Bk 2 p 8-9, 3-12-10
// low noise into other compartments (closer to soma)

objref fl2[X_DIM*Y_DIM*10]
j=0
for postX=0,XD{
for postY=0,YD{
		//fl[postX][postY] = new Gfluct2(.5)
		for case (&i, 2,3) PL2[postX][postY].dend[i] {fl2[j]=new Gfluct2(.5) 
		fl2[j].g_e0 = .000002// .016 .015, .02, 0.0121 (umho)	: average excitatory conductance
	 	fl2[j].g_i0 = 0.00002 // (umho)	: average inhibitory conductance
	 	fl2[j].std_e = 0.0018 // (umho)	: standard dev of excitatory conductance
        fl2[j].std_i = 0.0007 //(umho)	: standard dev of inhibitory conductance
		j=j+1 print(j)}
		for case (&i, 0,1,4,5,6) PL2[postX][postY].dend[i] {fl2[j]=new Gfluct2(.5) 
		fl2[j].g_e0 = .000002// .016 .015, .02, 0.0121 (umho)	: average excitatory conductance
	 	fl2[j].g_i0 = 0.00002 // (umho)	: average inhibitory conductance
	 	fl2[j].std_e = 0.0009 // (umho)	: standard dev of excitatory conductance
        fl2[j].std_i = 0.0007 //(umho)	: standard dev of inhibitory conductance
		j=j+1 print(j)}
		PL2[postX][postY].soma {fl2[j]=new Gfluct2(.5) 
		fl2[j].g_e0 = .000002// .016 .015, .02, 0.0121 (umho)	: average excitatory conductance
	 	fl2[j].g_i0 = 0.00002 // (umho)	: average inhibitory conductance
	 	fl2[j].std_e = 0.0009 // (umho)	: standard dev of excitatory conductance
        fl2[j].std_i = 0.0007 //(umho)	: standard dev of inhibitory conductance
		j=j+1 print(j)}
}}


//*************
// FS noise for Frontiers submission  Long trials 4-7-10 4-14-10, also 4-22-10_5 and 4-22-10_14
//*************
// Noise that gives avg rate of .625 Hz
//Noise to I cells, no spikes w/out input
objref Ifl[X_DIM * Y_DIM*16]
j=0
 for postX=0,XD{
   for postY=0,YD{
		if (object_id(IPL2[postX][postY]) ){
  		forsec IPL2[postX][postY].all {Ifl[j]=new Gfluct2(.5) 
  		Ifl[j].g_e0 = .000001 //.017 .016 .015, .02, 0.0121 (umho)	: average excitatory conductance
	 	Ifl[j].g_i0 = .000025 //0.0573 // (umho)	: average inhibitory conductance
	 	Ifl[j].std_e = .0003//0.0030 (umho)	: standard dev of excitatory conductance
        Ifl[j].std_i = .0007//0.0066 (umho)	: standard dev of inhibitory conductance
		j=j+1
   		} }
} } 

//*************
// SOM noise for Frontiers submission  Long trials 4-7-10 4-14-10, also 4-22-10_5 and 4-22-10_14
//*************
//(as in Noise used for sims until 3/29/10)
//Noise to SOM cells
objref Sfl[X_DIM * Y_DIM*16]
j=0
 for postX=0,XD{
   for postY=0,YD{
		if (object_id(SPL2[postX][postY]) ){
  		forsec SPL2[postX][postY].all {Sfl[j]=new Gfluct2(.5) 
  		Sfl[j].g_e0 = .000001 //.017 .016 .015, .02, 0.0121 (umho)	: average excitatory conductance
	 	Sfl[j].g_i0 = .0005 //0.0573 // (umho)	: average inhibitory conductance
	 	Sfl[j].std_e = .0001//0.0030 (umho)	: standard dev of excitatory conductance
        Sfl[j].std_i = .0007//0.0066 (umho)	: standard dev of inhibitory conductance
		j=j+1
   		} }
} }