Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144089
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
Reference:
1 . Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN; Gaba; Glutamate;
/
PFCcell
mechanism
.AppleDouble
ampa.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
d3.mod *
gabaa.mod *
gabab.mod *
h.mod
ican.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdrD.mod *
km.mod *
naf.mod
nap.mod *
netstimmm.mod
NMDA.mod
sinclamp.mod
.directory
                            
TITLE  H-current that uses Na ions
: Updated to use Cvode by Yiota Poirazi 12/1/2005

NEURON {
	SUFFIX h
        RANGE  gbar,vhalf, K, taun, ninf, g, ihi
:	USEION na READ ena WRITE ina      
	USEION hi READ ehi WRITE ihi VALENCE 1      
:	NONSPECIFIC_CURRENT i
}

UNITS {
	(um) = (micrometer)
	(mA) = (milliamp)
	(uA) = (microamp)
	(mV) = (millivolt)
	(pmho) = (picomho)
	(mmho) = (millimho)
}

:INDEPENDENT {t FROM 0 TO 1 WITH 100 (ms)}

PARAMETER {              : parameters that can be entered when function is called in cell-setup
:        dt             (ms)
:	v              (mV)
        ena    = 55    (mV)
:        eh     = -10   (mV)
:        ehi     = -30   (mV)
        ehi     = -10   (mV)
	K      = 10.0   (mV)	:8.5
	gbar   = 0     (mho/cm2)  : initialize conductance to zero
	vhalf  = -90   (mV)       : half potential
}	


STATE {                : the unknown parameters to be solved in the DEs
	n
}

ASSIGNED {             : parameters needed to solve DE
        v 
:	ina (mA/cm2)
	ihi (mA/cm2)
	ninf
	taun (ms)
	g
}

        


INITIAL {               : initialize the following parameter using states()
	rates()	
	n = ninf
	g = gbar*n
:	ina = g*(v-eh)
	ihi = g*(v-ehi)
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	g = gbar*n
:	ina = g*(v-eh)  
	ihi = g*(v-ehi)  
}

DERIVATIVE states {
	rates()
        n' = (ninf - n)/taun
}

PROCEDURE rates() {  
 
 	if (v > -10) {
	   taun = 1
	} else {
           taun = 2*(1/(exp((v+145)/-17.5)+exp((v+16.8)/16.5)) + 10) :h activation tau +5

	}  
         ninf = 1 - (1 / (1 + exp((vhalf - v)/K)))                  :steady state value
}