Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144089
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
Reference:
1 . Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN; Gaba; Glutamate;
/
PFCcell
mechanism
.AppleDouble
ampa.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
d3.mod *
gabaa.mod *
gabab.mod *
h.mod
ican.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdrD.mod *
km.mod *
naf.mod
nap.mod *
netstimmm.mod
NMDA.mod
sinclamp.mod
.directory
                            
TITLE Ca R-type channel with medium threshold for activation
: used in distal dendritic regions, together with calH.mod, to help
: the generation of Ca++ spikes in these regions
: uses channel conductance (not permeability)
: written by Yiota Poirazi on 11/13/00 poirazi@LNC.usc.edu
:
: updated to use CVode by Carl Gold 08/10/03
:  Updated by Maria Markaki  03/12/03

NEURON {
	SUFFIX car
	USEION ca READ cai, cao WRITE ica
        RANGE gcabar, m, h,ica
	RANGE inf, fac, tau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}


ASSIGNED {               : parameters needed to solve DE
	ica (mA/cm2)
:	iCa (mA/cm2)
        inf[2]
	tau[2]		(ms)
        v               (mV)
        celsius 	(degC)
	ecar    	(mV)      
	cai             (mM)      : initial internal Ca++ concentration
	cao             (mM)      : initial external Ca++ concentration
}


PARAMETER {              : parameters that can be entered when function is called in cell-setup
        gcabar = 0      (mho/cm2) : initialized conductance
}  

STATE {	
	m 
	h 
}            : unknown activation and inactivation parameters to be solved in the DEs  


INITIAL {
	rates(v)
        m = 0    : initial activation parameter value
	h = 1    : initial inactivation parameter value
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ecar = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
	ica = gcabar*m*m*m*h*(v - ecar)
:	iCa = gcabar*m*m*m*h*(v - ecar)

}


DERIVATIVE states {
	rates(v)
	m' = (inf[0]-m)/tau[0]
	h' = (inf[1]-h)/tau[1]
}

PROCEDURE rates(v(mV)) {LOCAL a, b :rest = -70
	FROM i=0 TO 1 {
		tau[i] = vartau(v,i)
		inf[i] = varss(v,i)
	}
}




FUNCTION varss(v(mV), i) {
	if (i==0) {
	   : varss = 1 / (1 + exp((v+48.5)/(-3(mV)))) : Ca activation original
	   varss = 1 / (1 + exp((v+43.5)/(-3(mV)))) : Ca activation original
	}
	else if (i==1) {
            :varss = 1/ (1 + exp((v+53)/(1(mV))))    : Ca inactivation original
	     varss = 1/ (1 + exp((v+50)/(1(mV))))    : Ca inactivation original
	}
}

FUNCTION vartau(v(mV), i) (ms){
	if (i==0) {
:       vartau = 50(ms)  : activation variable time constant
:       vartau = 70(ms)  : activation variable time constant, last used
	vartau = 8(ms)  : activation variable time constant, oct 18 for better vclamp

        }
	
	else if (i==1) {
:      	vartau = 5(ms)   : inactivation variable time constant
:      	vartau = 20(ms)   : inactivation variable time constant, last used
	vartau = 1(ms)   : inactivation variable time constat, oct18 for better vclamp
       }
	
}