CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
datastore
pars
plots
poirazi-nmda-car
tests
validation-plots
README.txt
ampa_forti.mod
cacum.mod
cad.mod *
cagk.mod
cal.mod
calH.mod
car.mod
car_mag.mod
cat.mod
d3.mod *
h.mod
hha_old.mod
hha2.mod
kadist.mod
kaprox.mod
kca.mod
km.mod
nap.mod
nmda_andr.mod
somacar.mod
binaverages.m
bpap-cell.hoc
bpap-data.hoc
bpap-dendburst.hoc
bpap-graphics.hoc
bpap-gui.hoc
bpap-gui.ses
bpap-pars.hoc
bpap-record.hoc
bpap-run.hoc
bpap-scaling.hoc
bpap-sims.hoc
bpap-sims-cell1.hoc
bpap-sims-cell2.hoc
bpap-sims-scaling.hoc
bpap-somainj.hoc
bpap-spiketrain.hoc
ca1_mrg_cell1.hoc
ca1_mrg_cell2.hoc
ca1_poirazi.hoc
ChannelBlocker.hoc
CrossingFinder.hoc
epspsizes.hoc
figure-example.R
figures.R
figures-common.R
FileUtils.hoc
FormatFile.hoc
ghk.inc
GraphUtils.hoc
Integrator.hoc
Makefile
mosinit.hoc
NmdaAmpaSpineSynStim.hoc
NmdaAmpaSynStim.hoc
ObjectClass.hoc
plotscalingresults_pergroup1.m
plotscalingresults5.m
PointProcessDistributor.hoc
ReferenceAxis.hoc
removezeros.m
RPlot.hoc
scaling_plots.m
Segment.hoc
SimpleSpine.hoc
Spine.hoc
TreePlot.hoc
TreePlotArray.hoc
triexpsyn.inc
units.inc
utils.hoc
validate-bpap.hoc
VarList.hoc
VCaGraph.hoc
                            
TITLE Ca R-type channel with medium threshold for activation

COMMENT 
  Kinetics taken from Jeffrey C Magee and Daniel Johnston (1995)
  "Characterization of single voltage-gated Na+ and Ca2+ channels in
  apical dendrites of rat CA1 pyramidal neurons", J. Physiol. 487(1):
  67-90.
ENDCOMMENT

NEURON {
    SUFFIX car_mag
    USEION ca READ cai, cao WRITE ica
    RANGE gmax, m, h
    RANGE minf, hinf, taum, tauh
    GLOBAL q10, taum_exp, z
}

INCLUDE "units.inc"

PARAMETER {   
    gmax = 0      (S/cm2) <0,1e9> 
    q10  = 3  
    taum_exp = 0.92  (ms)            : experimentally-measured taum
    z = 2                         : valency of Ca ions
}  

STATE {	mO mC hO hC }    

ASSIGNED {               : parameters needed to solve DE
    v       (mV)
    celsius (degC)
    cai     (mM)
    cao     (mM)
	  ica     (mA/cm2)
    minf
    hinf
	  taum    (ms)
    tauh    (ms)
}

BREAKPOINT {
    SOLVE kin METHOD sparse
	  ica = gmax*mO*mO*mO*hO*ghkg(v,cai,cao,z)
}

INITIAL { 
    taum = q10^(-(celsius-22(degC))/10(degC))*taum_exp
    tauh = q10^(-(celsius-22(degC))/10(degC))*53(ms)
    SOLVE kin STEADYSTATE sparse    
    ica = gmax*mO*mO*mO*hO*ghkg(v,cai,cao,z)
}

KINETIC kin {
    minf = 1/(1+exp(-(v- 3(mV))/8.3(mV)))
    hinf = 1/(1+exp( (v+39(mV))/9.2(mV)))
    ~ mC <-> mO (minf/taum, (1-minf)/taum)
    ~ hC <-> hO (hinf/tauh, (1-hinf)/tauh)
    CONSERVE mC + mO = 1
    CONSERVE hC + hO = 1
}

INCLUDE "ghk.inc"