Reinforcement learning of targeted movement (Chadderdon et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144538
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
Reference:
1 . Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PLoS One 7:e47251 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Reinforcement Learning; Reward-modulated STDP;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Dopamine; Gaba; Glutamate;
/
arm1d
README
drspk.mod *
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
stats.mod *
updown.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc *
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
intfsw.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
samutils.hoc *
sense.hoc *
setup.hoc *
sim.hoc
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
units.hoc *
xgetargs.hoc *
                            
//  $Header: /usr/site/nrniv/simctrl/hoc/RCS/local.hoc,v 1.15 2003/02/13 15:32:06 billl Exp $
//
//  This file contains local modifications to nrnoc.hoc and default.hoc
//
//  Users should not edit nrnoc.hoc or default.hoc.  Any local 
//  changes to these files should be made in this file.

// ------------------------------------------------------------
//* MODIFICATIONS TO NRNOC.HOC
// The procedures declared here will overwrite any duplicate
// procedures in nrnoc.hoc.
// ------------------------------------------------------------

//*MODIFICATIONS TO DEFAULT.HOC
//
// Vars added here may not be handled properly within nrnoc.hoc
//------------------------------------------------------------

//** String defaults

//** Simulation defaults

long_dt     = .001      // msec 

objref sfunc,tmpfile
sfunc = hoc_sf_   // needed to use is_name()
tmpfile = new File()  // check for existence before opening a user's local.hoc file

proc write_comment () {
  tmpfile.aopen("index")
  tmpfile.printf("%s\n",$s1)
  tmpfile.close()  
}

func asin () { return atan($1/sqrt(1-$1*$1)) }
func acos () { return atan(sqrt(1-$1*$1)/$1) }

objref mt[2]
mt = new MechanismType(0)
proc uninsert_all () { local ii
  forall for ii=0,mt.count()-1 {
    mt.select(ii)
    mt.selected(temp_string_)
    if (strcmp(temp_string_,"morphology")==0) continue
    if (strcmp(temp_string_,"capacitance")==0) continue
    if (strcmp(temp_string_,"extracellular")==0) continue
    if (sfunc.substr(temp_string_,"_ion")!=-1) continue
    mt.remove()
    // print ii,temp_string_
  }
}

condor_run = 0  // define for compatability