CA1 pyramidal neuron: Ih current (Migliore et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144541
NEURON files from the paper: Migliore M, Migliore R (2012) Know Your Current Ih: Interaction with a Shunting Current Explains the Puzzling Effects of Its Pharmacological or Pathological Modulations. PLoS ONE 7(5): e36867. doi:10.1371/journal.pone.0036867. Experimental findings on the effects of Ih current modulation, which is particularly involved in epilepsy, appear to be inconsistent. In the paper, using a realistic model we show how and why a shunting current, such as that carried by TASK-like channels, dependent on the Ih peak conductance is able to explain virtually all experimental findings on Ih up- or down-regulation by modulators or pathological conditions.
Reference:
1 . Migliore M, Migliore R (2012) Know your current I(h): interaction with a shunting current explains the puzzling effects of its pharmacological or pathological modulations. PLoS One 7:e36867 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Channel/Receptor;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy; Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,t; I A; I K; I M; I h; I Potassium;
/
Ih_current
readme.html
distr.mod *
h.mod *
kadist.mod
kaprox.mod
kdrca1.mod
km.mod
na3n.mod
naxn.mod
fig-5a.hoc
fixnseg.hoc *
mosinit.hoc
ri06.hoc
screenshot.png
                            
TITLE ...just to store peak membrane voltage
: M.Migliore June 2001

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
}


NEURON {
	SUFFIX ds
        RANGE vmax
}

ASSIGNED {
	vmax
}

INITIAL {
	vmax=v
}


BREAKPOINT {
	if (v>vmax) {vmax=v}
}