Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147141
Learning in the brain requires complementary mechanisms: potentiation and activity-dependent homeostatic scaling. We introduce synaptic scaling to a biologically-realistic spiking model of neocortex which can learn changes in oscillatory rhythms using STDP, and show that scaling is necessary to balance both positive and negative changes in input from potentiation and atrophy. We discuss some of the issues that arise when considering synaptic scaling in such a model, and show that scaling regulates activity whilst allowing learning to remain unaltered.
Reference:
1 . Rowan MS, Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Abstract integrate-and-fire adaptive exponential (AdEx) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; STDP; Homeostasis;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
stdpscalingpaper
mod
infot.mod *
intf6.mod
intfsw.mod *
misc.mod *
myfft.mod *
nstim.mod *
place.mod *
sampen.mod *
staley.mod *
stats.mod *
tsa.mod *
updown.mod *
vecst.mod *
bpf.h *
misc.h *
mkmod *
parameters.multi *
                            
: $Id: nstim.mod,v 1.24 2006/04/03 19:18:18 billl Exp $

NEURON	{ 
  ARTIFICIAL_CELL NStim
  RANGE interval, number, start, end
  RANGE noise,type,id
}

PARAMETER {
  interval	= 10 (ms) <1e-9,1e9>: time between spikes (msec)
  number	= 10 <0,1e9>	: number of spikes
  start		= 50 (ms)	: start of first spike
  noise		= 0 <0,1>	: amount of randomeaness (0.0 - 1.0)
  end		= 1e9 (ms)	: time to terminate train
}

ASSIGNED {
  event (ms)
  on
  endt (ms)
  type
  id
}

CONSTRUCTOR {
  VERBATIM 
  { if (ifarg(1)) { id= *getarg(1); } else { id= -1; }
    if (ifarg(2)) { type= *getarg(2); } else { type= 1; }
  }
  ENDVERBATIM
}

PROCEDURE seed (x) {
  set_seed(x)
}

INITIAL {
  on = 0
  if (noise < 0) { noise = 0 }
  if (noise > 1) { noise = 1 }
  if (interval <= 0.) { interval = .01 (ms) }
  if (start>=0 && number>0 && end>0) {
    event = start + invl(interval) - interval*(1. - noise)
    if (event < 0) { event = 0 }
    net_send(event, 3)
  }
}	

PROCEDURE init_sequence (t(ms)) {
  if (number > 0) {
    on = 1
    event = t
    endt = t + 1e-6 + interval*(number-1)
  }
}

FUNCTION invl (mean (ms)) (ms) {
  if (noise == 0) {
    invl = mean
  } else {
    invl = (1. - noise)*mean + noise*mean*exprand(1)
  }
}

NET_RECEIVE (w) {
  if (flag == 0) { : external event
    if (w > 0 && on == 0) { : turn on spike sequence
      init_sequence(t)
      net_send(0, 1)
    } else if (w < 0 && on == 1) { : turn off spiking
      on = 0
    }
  }
  if (flag == 3) { : from INITIAL
    if (on == 0) {
      init_sequence(t)
      net_send(0, 1)
    }
  }
  if (flag == 1 && on == 1) {
    net_event(t)
    event = event + invl(interval)
    if (event > endt || event > end) {
      on = 0
    } else {
      net_send(event - t, 1)
    }
  }
}

FUNCTION fflag () { fflag=1 }