Altered complexity in layer 2/3 pyramidal neurons (Luuk van der Velden et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147514
" ... Our experimental results show that hypercomplexity of the apical dendritic tuft of layer 2/3 pyramidal neurons affects neuronal excitability by reducing the amount of spike frequency adaptation. This difference in firing pattern, related to a higher dendritic complexity, was accompanied by an altered development of the afterhyperpolarization slope with successive action potentials. Our abstract and realistic neuronal models, which allowed manipulation of the dendritic complexity, showed similar effects on neuronal excitability and confirmed the impact of apical dendritic complexity. Alterations of dendritic complexity, as observed in several pathological conditions such as neurodegenerative diseases or neurodevelopmental disorders, may thus not only affect the input to layer 2/3 pyramidal neurons but also shape their firing pattern and consequently alter the information processing in the cortex."
Reference:
1 . van der Velden L, van Hooft JA, Chameau P (2012) Altered dendritic complexity affects firing properties of cortical layer 2/3 pyramidal neurons in mice lacking the 5-HT3A receptor. J Neurophysiol 108:1521-8 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex spiking regular (RS) neuron;
Channel(s): Ca pump;
Gap Junctions:
Receptor(s): 5-HT3;
Gene(s):
Transmitter(s): Serotonin;
Simulation Environment: NEURON;
Model Concept(s): Influence of Dendritic Geometry;
Implementer(s): van der Velden, Luuk [l.j.j.vandervelden at uva.nl];
Search NeuronDB for information about:  5-HT3; Ca pump; Serotonin;
/
dendritic_complexity
README.html
ca.mod *
cad.mod *
cadif.mod
cadif_pump.mod
kca.mod *
km.mod *
kv.mod *
L_HVA_Ca.mod *
na.mod
altered_complexity_model.hoc
mosinit.hoc
screenshot.png
                            
:26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
:    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal
 



TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE ca
	GLOBAL depth,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)
}


PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 200	(ms)		: rate of calcium removal
	cainf	= 100e-6(mM)
	cai		(mM)
}

STATE {
	ca		(mM) <1e-5>
}

INITIAL {
	ca = cainf
	cai = ca
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD euler
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca
}