Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147757
The role of amyloid beta (Aß) in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aß concentration perturbs presynaptic release in hippocampal neurons, in particular by increasing release probability of CA3-CA1 synapses. The model predics how this alteration can affect synaptic plasticity and signal integration. The results suggest that the perturbation of release probability induced by increased Aß can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.
Reference:
1 . Romani A, Marchetti C, Bianchi D, Leinekugel X, Poirazi P, Migliore M, Marie H (2013) Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comput Neurosci 7:1 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I Calcium; I_AHP;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Short-term Synaptic Plasticity; Facilitation; Depression; Synaptic Integration; Aging/Alzheimer`s;
Implementer(s): Bianchi, Daniela [danielabianchi12 -at- gmail.com]; Romani, Armando [romani.armando -at- gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I M; I h; I Calcium; I_AHP; Glutamate;
/
RomaniEtAl2013
experiment
cad.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
d3.mod *
h.mod *
kadist.mod *
kaprox.mod *
kca.mod *
kdr.mod *
km.mod *
na3.mod *
na3dend.mod *
na3notrunk.mod *
nap.mod *
nax.mod *
netstimmm.mod *
somacar.mod *
tmgsyn.mod
vecevent.mod
cell-setup.hoc
createNewSyn4.hoc
loadBasicModel.hoc
mosinit.hoc
session.ses
simulation.hoc
                            
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	gbar = 0.010   	(mho/cm2)	
								
	:tha  =  -30	(mV)		: v 1/2 for act	
       tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.5	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	:thi1  = -45	(mV)		: v 1/2 for inact 	
	:thi2  = -45 	(mV)		: v 1/2 for inact 
      thi1  = -45(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=3
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -54	(mV)		: inact inf slope	
	:qinf  = 4 	(mV)		: inact inf slope 
       qinf  =1 	(mV)		: inact inf slope 


	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1,Rd,qd)
	b = trap0(-vm,-thi2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}