Effects of Chloride accumulation and diffusion on GABAergic transmission (Jedlicka et al 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:148253
"In the CNS, prolonged activation of GABA(A) receptors (GABA(A)Rs) has been shown to evoke biphasic postsynaptic responses, consisting of an initial hyperpolarization followed by a depolarization. A potential mechanism underlying the depolarization is an acute chloride (Cl(-)) accumulation resulting in a shift of the GABA(A) reversal potential (E(GABA)). The amount of GABA-evoked Cl(-) accumulation and accompanying depolarization depends on presynaptic and postsynaptic properties of GABAergic transmission, as well as on cellular morphology and regulation of Cl(-) intracellular concentration ([Cl(-)](i)). To analyze the influence of these factors on the Cl(-) and voltage behavior, we studied spatiotemporal dynamics of activity-dependent [Cl(-)](i) changes in multicompartmental models of hippocampal cells based on realistic morphological data. ..."
Reference:
1 . Jedlicka P, Deller T, Gutkin BS, Backus KH (2011) Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 21:885-98 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s): I Chloride; I_HCO3;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Influence of Dendritic Geometry; Short-term Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Mohapatra, Namrata [mohapatra at em.uni-frankfurt.de];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; GabaA; I Chloride; I_HCO3; Gaba;
objectvar save_window_, rvp_
objectvar scene_vector_[2]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{
xpanel("RunControl", 0)
v_init = v_init
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 0
xvalue("t","t", 2 )
tstop = 5000
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
xcheckbox("Quiet",&stdrun_quiet,"")
realtime = 0
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(49,244)
}

/*
{
xpanel("hco3_ion (Globals)", 0)
hco3i0_hco3_ion = 16
xvalue("hco3i0_hco3_ion","hco3i0_hco3_ion", 1,"", 0, 0 )
hco3o0_hco3_ion = 26
xvalue("hco3o0_hco3_ion","hco3o0_hco3_ion", 1,"", 0, 0 )
xpanel(463,26)
}
{
xpanel("Temperature", 0)
celsius = 35
xvalue("celsius","celsius", 1,"", 0, 1 )
xpanel(526,175)
}
{
xpanel("cl_ion (Globals)", 0)
cli0_cl_ion = 5
xvalue("cli0_cl_ion","cli0_cl_ion", 1,"", 0, 0 )
clo0_cl_ion = 133.5
xvalue("clo0_cl_ion","clo0_cl_ion", 1,"", 0, 0 )
xpanel(792,22)
}

{
xpanel("ChangeProcedures", 0)
//NOISE = 0
xvalue("noise","NOISE", 1,"changeNoise(NOISE)", 1, 1 )
//PREL = 0.18
xvalue("Relative conductance","PREL", 1,"changeP(PREL)", 1, 1 )
//G = 0.0005
xvalue("Conductance","G", 1,"changeG(G)", 1, 1 )
//TAU1 = 0.5
xvalue("Rise time","TAU1", 1,"changeTau1(TAU1)", 1, 1 )
//TAU2 = 6
xvalue("Decay time","TAU2", 1,"changeTau2(TAU2)", 1, 1 )
//INTERVAL = 25
xvalue("interval","INTERVAL",1,"", 0, 0 )
//NUMBER = 80
xvalue("number","NUMBER",1,"", 0, 0 )
//START = 50
xvalue("start","START",1,"", 0, 0 )
xbutton("changeStim","changeStim(INTERVAL,NUMBER,START)")
xpanel(49,244)
}
*/
objectvar scene_vector_[1]
{doNotify()}