Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149100
The authors found that linearly scaling the ion channel conductance densities of a reference model with the conductance load in 28 3D reconstructed layer 5 thick-tufted pyramidal cells was necessary to match the experimental statistics of these cells electrical firing properties.
Reference:
1 . Hay E, Schürmann F, Markram H, Segev I (2013) Preserving axosomatic spiking features despite diverse dendritic morphology. J Neurophysiol 109:2972-81 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Action Potentials; Parameter sensitivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I h; I K,Ca; I Calcium; I A, slow;
/
HayEtAl2013
models
morphologies
readme.html
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTg.mod *
SK_E2.mod *
SKv3_1.mod *
mosinit.hoc
mRho.hoc
mRin.hoc
screenshot.png
step_current_firing_scaling.hoc
                            
:Reference :Colbert and Pan 2002

NEURON	{
	SUFFIX NaTg
	USEION na READ ena WRITE ina
	RANGE gNaTgbar, gNaTg, ina, vshifth, vshiftm, slopeh, slopem
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gNaTgbar = 0.00001 (S/cm2)
	vshifth = 0 (mV)
	vshiftm = 0 (mV)
	slopeh = 6
	slopem = 6
}

ASSIGNED	{
	v	(mV)
	ena	(mV)
	ina	(mA/cm2)
	gNaTg	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gNaTg = gNaTgbar*m*m*m*h
	ina = gNaTg*(v-ena)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)
	
  UNITSOFF
    if(v == -38){
    	v = v+0.0001
    }
		mAlpha = (0.182 * (v- (-38+vshiftm)))/(1-(exp(-(v- (-38+vshiftm))/slopem)))
		mBeta  = (0.124 * (-v + (-38+vshiftm)))/(1-(exp(-(-v + (-38+vshiftm))/slopem)))
		mTau = (1/(mAlpha + mBeta))/qt
		mInf = mAlpha/(mAlpha + mBeta)

    if(v == -66){
      v = v + 0.0001
    }

		hAlpha = (-0.015 * (v- (-66+vshifth)))/(1-(exp((v- (-66+vshifth))/slopeh)))
		hBeta  = (-0.015 * (-v +(-66+vshifth)))/(1-(exp((-v +(-66+vshifth))/slopeh)))
		hTau = (1/(hAlpha + hBeta))/qt
		hInf = hAlpha/(hAlpha + hBeta)
	UNITSON
}