Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149100
The authors found that linearly scaling the ion channel conductance densities of a reference model with the conductance load in 28 3D reconstructed layer 5 thick-tufted pyramidal cells was necessary to match the experimental statistics of these cells electrical firing properties.
Reference:
1 . Hay E, Schürmann F, Markram H, Segev I (2013) Preserving axosomatic spiking features despite diverse dendritic morphology. J Neurophysiol 109:2972-81 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Action Potentials; Parameter sensitivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I h; I K,Ca; I Calcium; I A, slow;
/
HayEtAl2013
models
morphologies
readme.html
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTg.mod *
SK_E2.mod *
SKv3_1.mod *
mosinit.hoc
mRho.hoc
mRin.hoc
screenshot.png
step_current_firing_scaling.hoc
                            
//Author: Etay Hay, 2013
// Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013, J.Neurophysiology)
//
// Measuring input resistance at soma or axon initial segment
// $o1: cell object
// $2: measuring location (0 - soma, 1 - axon)
func mRin(){ localobj c1,vvec,tvec,st1
  vvec = new Vector()
  tvec = new Vector()
  tstop = 10000
  c1 = $o1
  
	if ($2){
	  access c1.axon
	  st1 = new IClamp(0.5)
	  st1.del = tstop/2
	  st1.dur = 1000
	  st1.amp = 0.00005
	  cvode.record(&v(0.5),vvec,tvec)
	} else {
	  access c1.soma
	  st1 = new IClamp(0.5)
	  st1.del = tstop/2
	  st1.dur = 1000
	  st1.amp = 0.00005
	  cvode.record(&v(0.5),vvec,tvec)
	}

//============================= simulation ================================
  init()
  run()

  return ((vvec.x[tvec.indwhere(">=",st1.del+0.999*st1.dur)] - vvec.x[tvec.indwhere(">=",st1.del-0.5*st1.dur)])/st1.amp)  
}