Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150284
"… We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. …"
Reference:
1 . Mattioni M, Le Novère N (2013) Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS One 8:e66811 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
Gap Junctions:
Receptor(s):
Gene(s): Kv4.2 KCND2; Kv1.2 KCNA2; Cav1.3 CACNA1D; Cav1.2 CACNA1C; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Synaptic Plasticity; Signaling pathways; Calcium dynamics; Multiscale;
Implementer(s): Mattioni, Michele [mattioni at ebi.ac.uk];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
//****************************************************************************
// These are the default parameters for creation of the MSP cell.  This file
// is usually called by hoc/nacb_main.hoc

cai0_ca_ion = 0.001		// mM, Churchill 1998
cao0_ca_ion = 5			// mM, Churchill 1998 - gives eca = 100 mV
cali0_cal_ion = 0.001		// mM, Churchill 1998
calo0_cal_ion = 5			// mM, Churchill 1998 - gives eca = 100 mV
celsius = 35			// degC

global_ra = 100		// not really sure what this is
RA = 100			// ohm-cm - constant for whole cell
CM = 1				// uF-cm2 - constant for whole cell
G_PAS = 1.15e-5			// S/cm2
E_PAS = -70			// mV

G_NAF = 1.5		// soma only
G_NAFD = 0.0195	// all dends
G_NAP = 4e-5		// soma only
G_NAPD = 1.3802e-7	// all dends

G_KIR = 0.00014		// S/cm2
G_KAS = 0.0104		// soma & prox dends; s/cm2
G_KASD = 0.00095142	// mid & distal dends; S/cm2
G_KAF = 0.225 		// soma & prox dends; S/cm2
G_KAFD = 0.020584	// mid & dist dends; S/cm2
G_KRP = 0.001 		// 0.004; S/cm2
G_BKKCA = 0.001		// 
G_SKKCA = 0.145

CAINF = 1e-5			// mM, steady state intracell ca conc.
TAUR = 43			// ms, time const of ca diffusion - Jackson 2003
CA_DRIVE = 10000
CA_PUMP = 0.02

caNMDA = 0.1
P_CAL = 6.7e-6			// cm/s
P_CALD = 6.7e-6			// cm/s
P_CAL13 = 4.25e-7		//1.7e-6		// cm/s
P_CAL13D = 4.25e-7		//1.7e-6		// cm/s
P_CAN = 1.0e-5			// cm/s
P_CAQ = 6.0e-6			// cm/s
P_CAR = 2.6e-5			// cm/s
P_CAT = 4e-7			// cm/s	4e-7

EK = -90
ENA = 50

NET_N = 1e10

G_AMPA = 8.5e-4		//350e-6		//8.81e-4
G_NMDA = 12.2e-5	// 9.2e-5	
G_GABA = 0.0021		//4300e-6	//0.0027

AMPA_WT = 1
NMDA_WT = 1
GABA_WT = 1

NOISE = 1

NGLU = 84
NGABA = 84
NSYN = NGABA + NGLU
//****************************************************************************