Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import sys
import math

sys.path.extend(["..","../channels","../synapses","../networks","../simulations","../generators"])

from networkConstants import *
from synapseConstants import *
from stimuliConstants import * # has SETTLETIME and NUM_ORN_FILES_PER_GLOM
from simset_activinhibition import * # has REALRUNTIME
from moose.utils import * # has printCellTree(cell)
from moose.neuroml import *

from load_channels import *
from load_synapses import *
from moose_utils import * # has attach_spikes()

from pylab import * # part of matplotlib that depends on numpy but not scipy

RUNTIME = REALRUNTIME + SETTLETIME

########## Need to run (from node000):
## mpiexec -machinefile ~/hostfile -n <length of ORNfiringrates+1> ~/Python-2.6.4/bin/python2.6 <full script path> <cellname>
## example: (from node000)
## mpiexec -machinefile ~/hostfile -n 41 ~/Python-2.6.4/bin/python2.6 CellTest_cleland_sethupathy.py PG
## OR
## ~/Python-2.6.4/bin/python2.6 CellTest_cleland_sethupathy.py PG
#### 0 rank process is for collating all jobs. (rank starts from 0)
## rank 0 process should run on the machine whose X window system has a Display connected and can show the graphs!!
## The rank 0 stdout is always directed to the terminal from which mpiexec was run. But X Display will be on node of boss process.
##### For long simulations save results in a text file for replotting later and avoid above ambiguity.
from mpi4py import MPI

mpicomm = MPI.COMM_WORLD
mpisize = mpicomm.Get_size() # Total number of processes
mpirank = mpicomm.Get_rank() # Number of my process
mpiname = MPI.Get_processor_name() # Name of my node
# The 0th process is the boss who collates/receives all data from workers
boss = 0
print 'Process '+str(mpirank)+' on '+mpiname+'.'

ORNmax=20.0
if mpisize>1: ORNfiringrates = arange(0.0,ORNmax,ORNmax/float(mpisize-1))
else: ORNfiringrates = [5.0]
NUM_SPIKEFILES = 40

class CellTest:

    def __init__(self, cellname):
        self.context = moose.PyMooseBase.getContext()
        self.cellname = cellname
        load_channels()
        load_synapses(synchan_activation_correction)
        MML = MorphML({'temperature':CELSIUS})
        if cellname == 'PG':
            filename = 'PG_aditya2010_neuroML_L1_L2_L3.xml'
            self.ORNCellSynapse = 'ORN_PG'
            self.somaName = 'soma_0'
            self.numORNSyns = NUM_ORN_PG_SYNS
        elif cellname == 'mitral':
            filename = 'mitral_bbmit1993davison_neuroML_L1_L2_L3_mod_withspikeinit.xml'
            self.ORNCellSynapse = 'ORN_mitral'
            self.somaName = 'Seg0_soma_0'
            self.numORNSyns = NUM_ORN_MITRAL_SYNS
        self.cellSegmentDict = MML.readMorphMLFromFile(filename,{})
        self.cell = moose.Cell(self.context.deepCopy(self.context.pathToId('/library/'+cellname),\
            self.context.pathToId('/'),cellname))
        self.soma = moose.Compartment('/'+self.cellname+'/'+self.somaName)
        self.soma_vm = setupTable('soma_vm', self.soma,'Vm')
        if mpisize>1:
            self.soma_vm.stepMode = TAB_SPIKE # store only spikes
            self.soma_vm.stepSize = -0.030 # that cross -30 mV
        self.spikeTableList = []
        self.attachORNs()
        
        ### testing - channels
        # setup only one of the Tables below
        #self.soma_var = setupTable('soma_kca', moose.HHChannel2D(self.soma.path+'/Kca_mit_usb'), 'X')
        #self.soma_var = setupTable('soma_ca', moose.CaConc(self.soma.path+'/Ca_mit_conc'), 'Ca')

        ### For testing the mitral cell wrt the original mit.p, comment the line above for the ORNs
        ### and inject current below and compare with original mit.p
        ### comment out the test lines in self.run() and self.collate() also
        #inject = 0.5e-9 # 500pA injection
        #self.soma.inject = inject
        #printCellTree(self.cell)
        #print "______________________________________________________________"
        #print "The mit.p cell for comparison with the xml cell"
        #self.context.readCell('mit.p','/mitral2')
        #self.cell2 = moose.Cell("/mitral2")
        ## Since .p file has no way of knowing which channels are Ca-based or Ca-dependent, we need to do these two connections:
        #connect_CaConc( [moose.Neutral(comp) for comp in self.cell2.getChildren(self.cell2.id)] ) # assume all children of self.cell2 are compartments
        #printCellTree(self.cell2)
        #self.soma2 = moose.Compartment('/mitral2/soma')
        #self.soma2.inject = inject
        #self.soma2_vm = setupTable('soma2_vm', self.soma2,'Vm')
        
    def attachORNs(self):
        ##### Inhibitory Synapse NOT added as I am not sure if it is due to PG inhibition - Perhaps Cleland and Sethupathy also did not model it       
        ##### Excitatory + Inhibitory(not added) Synapse combo taken from the paper Djurisic etal 2008 JNeurosci.
        ##### Actually it's only an excitatory synapse, but they have used the inhibitory one to model the later time course.
        ##### Though this might be needed to account for PG cell inhibition?
        ##### Gbar-s have been set to ensure 16mV EPSP at the glom tuft as done in the paper.
        ##### Paper's defaults give only 8mV EPSP peak at glom tuft. So here multiplied by two.
        #####   Cannot use supplemental table values as no cytoplasmic resistivity Ri in this model.
        #####   Only axial resistance from glom to prim which doesn't matter much [maybe it does - loading rather than input resistance?].
        #####   Makes sense only if dendritic tree with many compartments.
        ##### Also no idea of how much to change the inhibitory part without Ri, so multiplied that also by 2

        synapse_list = []
        NML = NetworkML({'temperature':CELSIUS}) # has make_new_synapse()
        syn_name = self.ORNCellSynapse
        for segment in self.cellSegmentDict[self.cellname].values():
            # segment = [ segname,(proximalx,proximaly,proximalz),(distalx,distaly,distalz),\
            #    diameter,length,[potential_syn1, ... ] ]
            if syn_name in segment[5]: # is our ORN->cell synapse one of the potential synapses in this segment?
                syn_path = self.cell.name+'/'+segment[0]+'/'+syn_name
                if not self.context.exists(syn_path):
                    NML.make_new_synapse(syn_name, moose.Compartment(self.cell.name+'/'+segment[0]), syn_name)
                syn = moose.SynChan(syn_path)
                synapse_list.append(syn)

        for i in range(self.numORNSyns):
            ## Bad practice below - should be in NetworkML - no random numbers in simulations, only in generators.
            synapse = synapse_list[int(uniform(0,len(synapse_list)))]
            print "Connecting ", synapse.path
            spiketable = moose.TimeTable(synapse.path+'/tt'+str(i)) # unique spiketable (could be to same synapse)
            #### SynChan's synapse MsgDest takes time as its argument. Thus spiketable should contain a list of spike times.
            spiketable.connect("event", synapse,"synapse")
            synapse.setWeight(synapse.numSynapses-1, 2) # above added connection in synaptic array is set to weight 1
            self.spikeTableList.append(spiketable)
            ## constrate firefiles are NUM_SPIKEFILES in number, each of which has NUM_ORN_FILES_PER_GLOM lines.
            ## Each line can connect to a spiketable. Choose one randomly and connect. fileNumbers field is used by attach_spikes()
            spiketable.addField('fileNumbers')
            spiketable.setField( 'fileNumbers', str(int(uniform(0,NUM_ORN_FILES_PER_GLOM))) )

    def run(self):
        self.context.setClock(0, SIMDT, 0)
        self.context.setClock(1, SIMDT, 0) #### The hsolve and ee methods use clock 1
        self.context.setClock(2, SIMDT, 0) #### hsolve uses clock 2 for mg_block, nmdachan and others.
        self.context.setClock(PLOTCLOCK, PLOTDT, 0)
        
        firingrate = ORNfiringrates[mpirank-1]
        for i,spiketable in enumerate(self.spikeTableList):
            attach_spikes( '../firefiles/firefiles_constrate/firetimes_constrate'\
                +str(firingrate)+'_trial'+str(i%NUM_SPIKEFILES),\
                spiketable, 'cellORNtest'+str(mpirank) )
        self.context.reset() # A second reset will not work properly with tables!
        self.context.step(RUNTIME)
        if mpisize>1:
            print "sending for value ",firingrate,' from ',mpirank
            spiketimes = array(self.soma_vm)
            spiketimes_post = spiketimes[spiketimes>SETTLETIME]
            mpicomm.send( spiketimes_post, dest=boss, tag=0 )
            ### testing - channels
            #mpicomm.send( array(self.soma_var), dest=boss, tag=1 )
            ### testing - comparison with mit.p
            #print "sending 2 for value ",firingrate,' from ',mpirank
            #mpicomm.send( array(self.soma2_vm), dest=boss, tag=1 )
        else:
            figure()
            plot(array(self.soma_vm),'-k')
            show()

def collate():
    responsefreqlist = []
    for i,firingrate in enumerate(ORNfiringrates): # firingrate in Hz.
        soma_times = mpicomm.recv(source=i+1, tag=0)
        print "received from ",i+1," on boss machine ",mpiname
        if len(soma_times)>0:
            while soma_times[-1] == 0.0: # MOOSE inserts crap zeros at the end in TAB_SPIKE table
                soma_times = delete(soma_times,-1) # numpy's delete 0th element
                if len(soma_times) == 0: break
        responsefreqlist.append(len(soma_times)/REALRUNTIME)
        ## plot only if table's stepMode is not TAB_SPIKE
        #figure()
        #plot(soma_times,',r')
        ### testing - channels
        #soma_var = mpicomm.recv(source=i+1, tag=1)
        #figure()
        #plot(soma_var,'-b')
        ### testing - comparison with mit.p
        #soma2_vm = mpicomm.recv(source=i+1, tag=1)
        #print "received 2 from ",i+1," on boss machine ",mpiname
        #plot(soma2_vm,',b')
    figure()
    plot(ORNfiringrates,responsefreqlist,'+-r')
    show()
        
if __name__ == "__main__":
    seed([100.0])
    cellname = sys.argv[1]
    if mpisize>1:
        if mpirank==boss:
            collate()
        else:
            cell = CellTest(cellname)
            cell.run()
    else:
        cell = CellTest(cellname)
        cell.run()