Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
olfactory-bulb-gilra-bhalla
channels
neuron_channels
README.txt
cadecay.mod *
hpg.mod *
kA.mod
kamt.mod *
kca3.mod *
kdrmt.mod *
kfasttab.mod
kslowtab.mod
lcafixed.mod
nafast.mod
naxn.mod *
TCa_d.mod *
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mit_memb.hoc
NeuronSimulatorChannelTest.py
                            
-> These .mod files have been modified:
1) Their suffix (channel name) has been changed to match those in my (Aditya's) olfactory bulb model.
2) The inf-s and tau-s have been put into the form xinf anf xtau, etc. eg. minf and mtau.
3) Ensure that in the NEURON {} block, xinf and xtau are defined as GLOBAL.

-> I also need to load mit_memb.hoc to insert the tables from files required for kslow and kfast.
1) I kept only the table loading part of the file.
2) I modified the table_tabkinf_kslowtab to table_tabkinf_kslowtab, and similarly for kfasttab.

Check out NeuronSimulatorChannelTest.py and MOOSEChannelTest.py for plots of inf-s and tau-s.
First run nrnivmodl in the neuron_channels directory.