L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155057
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
Reference:
1 . Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [PubMed]
2 . Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Connectionist Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Working memory;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
/
L5microcircuit
mechanism
ampa.mod
ampain.mod
cadyn.mod
cal.mod
can.mod
car.mod
cat.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
ican.mod
iks.mod
kadist.mod
kca.mod
kct.mod
kdr.mod *
naf.mod
nap.mod
netstim.mod *
NMDA.mod
NMDA_syn.mod
sinclamp.mod *
vecstim.mod *
                            
: Fast Na+ channel
: from Durstewitz & Gabriel (2006), Cerebral Cortex

NEURON {
	SUFFIX Naf
	USEION na READ ena WRITE ina
	RANGE gnafbar, ina, gna
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gnafbar= 0.086 (mho/cm2) <0,1e9>
	ena = 55 (mV)

}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	minf hinf 
	mtau (ms)
	htau (ms)
	gna (mho/cm2)
	
}



INITIAL {
	rate(v)
	m = minf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gna = gnafbar*m*m*m*h
	ina = gna*(v-55)
	
}

DERIVATIVE states {
	rate(v)
	m' = (minf-m)/mtau
	h' = (hinf-h)/htau
}

UNITSOFF

FUNCTION malf( v){ LOCAL va 
	va=v+28
	if (fabs(va)<1e-04){
	   malf= -0.2816*(-9.3 + va*0.5)
	}else{
	   malf = -0.2816*(v+28)/(-1+exp(-(v+28)/9.3))
	}
}


FUNCTION mbet(v(mV))(/ms) { LOCAL vb 
	vb=v+1
	if (fabs(vb)<1e-04){
	   mbet = 0.2464*(6 + vb*0.5)
	}else{
	   mbet = 0.2464*(v+1)/(-1+exp((v+1)/6))
}
}	


FUNCTION half(v(mV))(/ms) { LOCAL vc 
	vc=v+43.1
	if (fabs(vc)<1e-04){
	   half=0.098*(20 + vc*0.5)
	}else{
	   half=0.098/exp((v+23.1)/20) :was 43.1
}
}


FUNCTION hbet(v(mV))(/ms) { LOCAL vd
	vd=v+13.1
	if (fabs(vd)<1e-04){
	   hbet=1.4*(10 + vd*0.5)
	}else{
	   hbet=1.4/(1+exp(-(v+25.1)/10)) :was 13.1 changed july 30, 2007
} 
}




PROCEDURE rate(v (mV)) {LOCAL q10, msum, hsum, ma, mb, ha, hb
	

	ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)
	
	msum = ma+mb
	minf = ma/msum
	mtau = 1/(msum)
	
	
	hsum=ha+hb
	hinf=ha/hsum
	htau = 1 / (hsum)
	
}

	
UNITSON