Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)

 Download zip file 
Help downloading and running models
Accession:156780
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
Reference:
1 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Laminar Connectivity; Orientation selectivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow; Gaba; Glutamate;
/
HaySegev2014
models
readme.txt
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA2.mod *
ProbUDFsyn2.mod *
SK_E2.mod *
SKv3_1.mod *
cell1.asc *
microcircuit.hoc
                            
:Comment : mtau deduced from text (said to be 6 times faster than for NaTa)
:Comment : so I used the equations from NaT and multiplied by 6
:Reference : Modeled according to kinetics derived from Magistretti & Alonso 1999
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX Nap_Et2
	USEION na READ ena WRITE ina
	RANGE gNap_Et2bar, gNap_Et2, ina
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gNap_Et2bar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ena	(mV)
	ina	(mA/cm2)
	gNap_Et2	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gNap_Et2 = gNap_Et2bar*m*m*m*h
	ina = gNap_Et2*(v-ena)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
		mInf = 1.0/(1+exp((v- -52.6)/-4.6))
    if(v == -38){
    	v = v+0.0001
    }
		mAlpha = (0.182 * (v- -38))/(1-(exp(-(v- -38)/6)))
		mBeta  = (0.124 * (-v -38))/(1-(exp(-(-v -38)/6)))
		mTau = 6*(1/(mAlpha + mBeta))/qt

  	if(v == -17){
   		v = v + 0.0001
  	}
    if(v == -64.4){
      v = v+0.0001
    }

		hInf = 1.0/(1+exp((v- -48.8)/10))
    hAlpha = -2.88e-6 * (v + 17) / (1 - exp((v + 17)/4.63))
    hBeta = 6.94e-6 * (v + 64.4) / (1 - exp(-(v + 64.4)/2.63))
		hTau = (1/(hAlpha + hBeta))/qt
	UNITSON
}