3D olfactory bulb: operators (Migliore et al, 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168591
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
Reference:
1 . Migliore M, Cavarretta F, Marasco A, Tulumello E, Hines ML, Shepherd GM (2015) Synaptic clusters function as odor operators in the olfactory bulb. Proc Natl Acad Sci U S A 112:8499-504 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Sensory processing; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
figure1eBulb3D
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
fi_stdp.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
.hg_archival.txt
all2all.py *
balance.py *
bindict.py
binsave.py
binspikes.py
BulbSurf.py
catfiles.sh
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
falsegloms.txt
fixnseg.hoc *
g37e1i002.py
gidfunc.py *
Glom.py *
granule.hoc *
granules.py
grow.py
input-odors.txt *
loadbalutil.py *
lpt.py *
m2g_connections.py
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mkdict.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
realSoma.py *
runsim.py
spike2file.hoc *
split.py *
util.py *
vrecord.py
weightsave.py *
                            
from common import *
from loadbalutil import lb
import net_mitral_centric as nmc
from balance import load_bal
from destroy_model import destroy_model
from all2all import all2all
import split
import util
import mgrs

def determine_multisplit_complexity(model):
  ''' single phase '''
  cxlist = []
  for gid in model.mitrals:
    cxm = split.mitral_complexity(model.mitrals[gid])
    cxlist.append((cxm[1],(gid,-1)))
    for i,cx in enumerate(cxm[2]):
      cxlist.append((cx,(gid,i)))
  for gid in model.granules:
    cxlist.append((lb.cell_complexity(sec=model.granules[gid].soma),(gid,-1)))
  return cxlist

def multisplit_distrib(model):
  enter = h.startsw()
  cxlist = determine_multisplit_complexity(model)
  #start over
  destroy_model(model)
  # but we still have model.mconnections and model.rank_gconnections
  # from the round-robin distribution perspective.
  # we will need to tell the ranks  where to distribute that information

  cxlist = load_bal(cxlist, nhost) #cxlist is the list of (cx,(gid,piece)) we want on this process
  # the new distribution of mitrals and granules
  model.gids = set([item[1][0] for item in cxlist])
  model.mitral_gids = set([gid for gid in model.gids if gid < params.gid_granule_begin])
  model.granule_gids = model.gids - model.mitral_gids
  # for splitting need gid:[pieceindices]
  gid2pieces = {}
  for item in cxlist:
    gid = item[1][0]
    piece = item[1][1]
    if not gid2pieces.has_key(gid):
      gid2pieces.update({gid:[]})
    gid2pieces[gid].append(piece)

  # get the correct mconnections and gconnections
  # Round-robin ranks that presently have the connection info for the gids
  rr = {}
  for gid in model.gids:
    r = gid%nhost
    if not rr.has_key(r):
      rr.update({r:[]})
    rr[r].append(gid);
  rr = all2all(rr)
  # rr is now the ranks for where to send the synapse information
  # all the gids in rr were 'owned' by the round-robin distribution
  # may wish to revisit so that only synapse info for relevant pieces is
  # scattered.
  
  mc = model.mconnections
  gc = model.rank_gconnections
  # construct a ggid2connection dict
  ggid2connection = {}
  for r in gc:
    for ci in gc[r]:
      ggid = ci[3]
      if not ggid2connection.has_key(ggid):
        ggid2connection.update({ggid:[]})
      ggid2connection[ggid].append(ci)
  for r in rr:
    gids = rr[r]
    mgci = []
    rr[r] = mgci
    for gid in gids:
      if mc.has_key(gid):
        mgci.append(mc[gid])
      else:
        mgci.append(ggid2connection[gid])
  mgci = all2all(rr)
  # mgci contains all the connection info needed by the balanced distribution
        
  # create mitrals and granules, split and register and create synapses
  nmc.dc.mk_mitrals(model) # whole cells 
  nmc.build_granules(model)
  for gid in gid2pieces:
    if gid < params.Nmitral:
      split.splitmitral(gid, model.mitrals[gid], gid2pieces[gid])
  pc.multisplit()
  nmc.register_mitrals(model)
  nmc.register_granules(model)
  # build_synapses() ... use mgci to build explicitly
  model.mgrss = {}
  for r in mgci:
    for cil in mgci[r]:
      for ci in cil:
        if not model.mgrss.has_key(mgrs.mgrs_gid(ci[0], ci[3], ci[6])):
          rsyn = mgrs.mk_mgrs(*ci[0:7])
          if rsyn:
            model.mgrss.update({rsyn.md_gid : rsyn})
  nmultiple = int(pc.allreduce(mgrs.multiple_cnt(), 1))
  if rank == 0:
    print 'nmultiple = ', nmultiple
  detectors = h.List("AmpaNmda")
  util.elapsed('%d ampanmda for reciprocalsynapses constructed'%int(pc.allreduce(detectors.count(),1)))
  detectors = h.List("FastInhib")
  util.elapsed('%d fi for reciprocalsynapses constructed'%int(pc.allreduce(detectors.count(),1)))
  detectors = h.List("ThreshDetect")
  util.elapsed('%d ThreshDetect for reciprocalsynapses constructed'%int(pc.allreduce(detectors.count(),1)))
  if rank == 0: print 'multisplit_distrib time ', h.startsw() - enter