Neuronal dendrite calcium wave model (Neymotin et al, 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168874
"... We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3 ), diffusible Ca2+, IP3 receptors (IP3 Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. ... At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3 R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3 R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50 - 90µm /sec). ... The measures were sensitive to changes in density and spacing of IP3 R hotspots and stacks. ... An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3 Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. "
Reference:
1 . Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput 27:898-924 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell;
Channel(s): I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Calcium waves; Reaction-diffusion;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; McDougal, Robert [robert.mcdougal at yale.edu]; Sherif, Mohamed [mohamed.sherif.md at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; AMPA; I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump; Glutamate;
/
ca1dDemo
data
readme.txt
cagk.mod *
cal_mig.mod
can_mig.mod
cat_mig.mod
kaprox.mod *
kdrca1.mod *
km.mod *
misc.mod *
na3n.mod *
naf.mod
NMDA.mod
stats.mod *
vecst.mod *
AMPA0.cfg
AMPA150.cfg
analysisCode.py
batch.py
cawave.cfg
cawave.py
conf.py
geneval_cvode.inc *
misc.h *
netcon.inc *
nqs.hoc
nqs.py
plot_fig11.py
setup.hoc *
vector.py *
                            
TITLE CaGk
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX cagk
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gbar,gkca,ik
	GLOBAL oinf, tau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gbar=.01	(mho/cm2)	: Maximum Permeability
	cai 		(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	tau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	o' = (oinf - o)/tau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	tau = 1/(a + bet(v, c))
	oinf = a*tau
}