Neuronal dendrite calcium wave model (Neymotin et al, 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168874
"... We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3 ), diffusible Ca2+, IP3 receptors (IP3 Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. ... At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3 R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3 R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50 - 90µm /sec). ... The measures were sensitive to changes in density and spacing of IP3 R hotspots and stacks. ... An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3 Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. "
Reference:
1 . Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput 27:898-924 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell;
Channel(s): I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Calcium waves; Reaction-diffusion;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; McDougal, Robert [robert.mcdougal at yale.edu]; Sherif, Mohamed [mohamed.sherif.md at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; AMPA; I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump; Glutamate;
/
ca1dDemo
data
readme.txt
cagk.mod *
cal_mig.mod
can_mig.mod
cat_mig.mod
kaprox.mod *
kdrca1.mod *
km.mod *
misc.mod *
na3n.mod *
naf.mod
NMDA.mod
stats.mod *
vecst.mod *
AMPA0.cfg
AMPA150.cfg
analysisCode.py
batch.py
cawave.cfg
cawave.py
conf.py
geneval_cvode.inc *
misc.h *
netcon.inc *
nqs.hoc
nqs.py
plot_fig11.py
setup.hoc *
vector.py *
                            
from neuron import h
h.load_file("nqs.hoc")
import numpy
from vector import *

NQS = h.NQS
nqsdel = h.nqsdel

# converts 2D numpy array into an NQS
def np2nqs (npa,names=[]):
  nrow,ncol = numpy.shape(npa)
  if ncol < 2:
    print "np2nqs ERRA: must have at least 2 columns!"
    return None
  nqo = NQS(ncol)
  for i in xrange(ncol):
    vcol = py2vec( npa[0:nrow][i] )
    nqo.v[i].copy(vcol)
  for i in xrange(len(names)): # assign names
    nqo.s[i].s = names[i]
  return nqo

# converts nqs to numpy array
def nqs2np (nq,Full=False):
  if Full: nq.tog("DB")
  ncol,nrow = int(nq.m[0]),nq.size()
  npa = numpy.zeros( (nrow,ncol) )
  for i in xrange( ncol ):
    nptmp = vec2nparr( nq.getcol(nq.s[i].s) )
    npa[0:nrow][i] = nptmp[0:nrow]
  return npa

# convert nqs to a python dictionary
def nqs2pyd (nq,Full=False):
  d = {};
  if Full: nq.tog("DB");
  for i in xrange(int(nq.m[0])): d[nq.s[i].s] = vec2np(nq.getcol(nq.s[i].s))
  return d