CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184139
This model simulates the contribution of dendritic Na+ and D-type K+ channels to EPSPs at three different locations of apical dendrites, which mimicking innervation sites of mossy fibers (MF), recurrent fibers (AC), and perforant pathway (PP).
Reference:
1 . Hyun JH, Eom K, Lee KH, Bae JY, Bae YC, Kim MH, Kim S, Ho WK, Lee SH (2015) Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells. J Physiol 593:3617-43 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I A; I Sodium; I_KD;
Gap Junctions:
Receptor(s):
Gene(s): Kv1.2 KCNA2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I A; I Sodium; I_KD;
/
HyunEtAl2015
ReadMe.html
Exp2GluSyn.mod
KaProx.mod
KdBG40.mod
Kdr.mod
KhdM01.mod
Na.mod
E807.hoc
Fig7Bb_(IK_conditioned).hoc
Fig7Bb_(IK_control).hoc
Fig7Bc(Gin).hoc
Fig7C_(AC-EPSP).hoc
Fig7C_(MF-EPSP).hoc
Fig7C_(PP-EPSP).hoc
Fig7D_(AC-EPSP).hoc
Fig7D_(MF-EPSP).hoc
Fig7D_(PP-EPSP).hoc
Fig7E_(control).hoc
Fig7E_(lowGkd).hoc
Fig7E_(lowGkdlowGna).hoc
fixnseg.hoc *
L22.hoc
mosinit.hoc
screenshot.png
                            
TITLE Kd current

COMMENT 
		For act & inact tau, 
		  Storm JF (1988) Nature, 336:379-381
		For vhalf and slope of xinf and yinf,
		  BossuGahwiler1_JP96.pdf &  TytgatDaenens_BJP97(kv11).pdf 
		To fit simulation to the CA3 data, LSH changed
			tauy, 150 -> 100 ms (Hyun et al JP 2013)
			vhalfx, -55 -> -48(Saviane JP 2003 and Hyun JP 2013)
			vhalfy, -88 -> -90 (Saviane JP 2003)
			Ky, 0.6e-3 -> 1e-3
			zettax, 2 -> 2.5 (Hyun JP 2013)
ENDCOMMENT

NEURON {
	SUFFIX KdBG
	USEION k WRITE ik
	RANGE  gbar,ik
	GLOBAL xtau, ytau, xinf, yinf
}

UNITS {
	(S)	= (siemens)
	(mA)	= (milliamp)
	(mV)	= (millivolt)
	FARADAY	= 96480 (coulombs)
	R	= 8.314  (joule/degC)
}

PARAMETER {
	v		(mV)
	gbar	= 1.0e-3	(S/cm2)
	celsius	= 25	(degC)
	Kx = 1   (1/ms)
	Ky	=   1e-3	(1/ms)
	zettax	=  2.5		(1)
	zettay	=  -1.5		(1)
	vhalfx	= -48.0		(mV)
	vhalfy	= -90.0		(mV)
	taux	=   1		(ms)
	tauy	=   100		(ms)
	q10	= 1.0	(1)    : no temp dependence
	FRT = 39 (coulombs/joule) 
}

ASSIGNED {
	ik     	(mA/cm2)
	xtau    (ms)
	ytau    (ms)
	xinf	(1)
	yinf	(1)
}

STATE { xs ys }

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik= gbar * xs * ys * ( v + 90.0 ) 
}

DERIVATIVE states {
	rates(v)
	xs'= (xinf- xs)/ xtau	
	ys'= (yinf- ys)/ ytau
}

INITIAL {
	rates(v)
	xs= xinf
	ys= yinf
}

PROCEDURE rates(v (mV)) { LOCAL a, b, T, qt
	T = celsius + 273.15  
	qt = q10 ^( (celsius-35.0) / 10.0(K) )
	a = qt*Kx*exp( (1.0e-3)*  zettax*(v-vhalfx)*FRT )
	b = qt*Kx*exp( (1.0e-3)* -zettax*(v-vhalfx)*FRT )
	xinf = a / ( a + b )
	xtau = 1 /(a + b)+ taux

	a = qt*Ky*exp( (1.0e-3)*  zettay* (v-vhalfy)*FRT )
	b = qt*Ky*exp( (1.0e-3)* -zettay* (v-vhalfy)*FRT )
	yinf = a   / ( a + b )
	ytau = 1.0 / ( a + b ) + tauy
}