Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184497
A stereotypical pyramidal neuron morphology with ion channel parameter combinations that reproduce firing patterns of one young and one aged rhesus monkey L3 PFC pyramidal neurons. Parameters were found through an automated optimization method.
Reference:
1 . Rumbell TH, Draguljic D, Yadav A, Hof PR, Luebke JI, Weaver CM (2016) Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons. J Comput Neurosci 41:65-90 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I_AHP; I Cl, leak;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Parameter Fitting; Detailed Neuronal Models; Aging/Alzheimer`s;
Implementer(s):
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,p; I Na,t; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I_AHP; I Cl, leak;
/*

This port was made from the FORTRAN code into the NEURON enviroment based on 

	Traub RD, Buhl EH, Gloveli T, Whittington MA. Fast Rhythmic Bursting Can Be Induced in Layer 2/3 Cortical Neurons by Enhancing Persistent Na(+) Conductance or by Blocking BK Channels.J Neurophysiol. 2003 Feb;89(2):909-21

This port was made by Roger D Traub and Maciej Lazarewicz (mlazarew@seas.upenn.edu)

Thanks to Ashlen P Reid for help with porting a morphology of the cell.

*/

// include this first in every cell template file for different models, 
// adjusting values depending on what they are called in the model:
strdef somaname,stimname
somaname="pyr3_.comp[1].v( 0.5 )"
stimname="pyr3_.inj1_.amp"

load_file("model/pyr3_template")

objref pyr3_
pyr3_ = new pyr3(MRFflag,CELL)

dt     		= 0.025 // Simulation are producion proper results even with time step 25 us
steps_per_ms 	= 40

tstop  		= 2015
v_init 		= -70