Cerebellar nuclear neuron (Sudhakar et al., 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:185513
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
Reference:
1 . Sudhakar SK, Torben-Nielsen B, De Schutter E (2015) Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses. PLoS Comput Biol 11:e1004641 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I Na,p; I T low threshold; I h; I Sodium;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Rate-coding model neurons; Rebound firing;
Implementer(s):
Search NeuronDB for information about:  NMDA; Glutamate; Gaba; I Na,p; I T low threshold; I h; I Sodium; Gaba; Glutamate;
/
SudhakarEtAl2015
readme.html
CaConc.mod *
CaHVA.mod *
CaL.mod
CalConc.mod *
CaLVA.mod *
DCNsyn.mod *
DCNsynGABA.mod
DCNsynNMDA.mod *
fKdr.mod *
GammaStim.mod *
h.mod *
Ifluct8.mod *
NaF.mod *
NaP.mod *
pasDCN.mod *
SK.mod *
sKdr.mod *
TNC.mod
vecevent.mod *
cellids.dat
cellids_n.dat
datasp_ex1.dat
datasp1.dat
DCN_init_model1.hoc
DCN_init_model2.hoc
DCN_init_model2_highgain.hoc
DCN_init_model2_lowgain.hoc
DCN_init_model2_medgain.hoc
DCN_init_model3.hoc
DCN_mechs1.hoc *
DCN_mechs2.hoc
DCN_morph.hoc *
DCN_params.hoc
l_ex1.dat
l1.dat
model1_params.hoc
model2_params.hoc
model2_params_highgain.hoc
model2_params_lowgain.hoc
model2_params_medgain.hoc
model3_params.hoc
mosinit.hoc
pausebeg.dat
pausebeg_n.dat
screenshot.png
                            
TITLE Intracellular calcium concentration from the CaLVA channel in deep cerebellar nucleus (DCN) neuron
COMMENT
    This mechanism keeps track of intracellular calcium entering the cell through
    the CaLVA channel, with the sole purpose of setting the conductance of the 
    channel which uses the GHK equation to calculate current flow.
    
    The mechanism is a copy of the CaConc.mod and thus uses the same method of
    tracking Ca concentration merely in a hypothetical shell below the membrane
    of the cell.
ENDCOMMENT

NEURON {
    SUFFIX CalConc
    USEION cal READ ical WRITE cali VALENCE 2    
    RANGE cali, kCal, depth
    GLOBAL tauCal
}

UNITS {
    (molar) = (1 / liter)
    (mM) = (millimolar)
    (mV) = (millivolt)
    (mA) = (milliamp)
    PI = (pi) (1)
}

PARAMETER {
    : qdeltat has been skipped here and is used via the division of this NMODL's
    : tauCal when it's inserted (in hoc).

    : kCa in the following is given for the soma and shall be adjusted
    : from hoc when the CaConc model is inserted in a dendrite: 1.04e-6
    : in the dendritic compartments units. kCa is here given as 1 / coulombs
    : instead of moles / coulomb as in the GENESIS code since mole
    : in NEURON simply equals the number 6.022 * 10e23
    kCal = 3.45e-7 (1/coulomb)
    tauCal = 70 (ms)
    caliBase = 50e-6 (mM) : the resting intracellular calcium conc =50 nM
    depth = 0.2 (micron)
}

ASSIGNED {
    C (kilo / m3 / s)
    D (kilo / m3 / s)
    ical (mA/cm2)
}

STATE {
    cali (mM)
}

INITIAL {
    cali = caliBase
}

BREAKPOINT {
    SOLVE states METHOD cnexp
}

DERIVATIVE states {
    C = (cali - caliBase) / tauCal
	D = - kCal / depth * ical * (1e4)
    cali' = D - C
}