Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187474
" ... In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. ... We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. ..."
Reference:
1 . Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [PubMed]
2 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
3 . Mäki-Marttunen T, Halnes G, Devor A, Metzner C, Dale AM, Andreassen OA, Einevoll GT (2018) A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 293:264-283 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; NEURON (web link to model); Python; NeuroML;
Model Concept(s):
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no]; Metzner, Christoph [c.metzner at herts.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
/
reducedhaymodel
snmf
models
morphologies
README.html
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
SK_E2.mod *
SKv3_1.mod *
drawfits_withmids_combfs.py
drawfits_withmids_combfs_nseg5.py
drawmorphs.py
drawobjective_evolution.py
emoo.py
mytools.py
originalrun.sav
pars_withmids_combfs_1a.sav
pars_withmids_combfs_1a_0a.sav
pars_withmids_combfs_1a_0a_5a.sav
pars_withmids_combfs_1a_0a_5a_5a.sav
pars_withmids_combfs_final.sav *
pars_withmids_combfs_fixed_final.sav
screenshot.png
snmf_protocols.py
snmf_target.py
snmf_withmids_combfs.py
                            
:Comment : The persistent component of the K current
:Reference : :		Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats:subtypes and gradients,Korngreen and Sakmann, J. Physiology, 2000
:Comment : shifted -10 mv to correct for junction potential
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21


NEURON	{
	SUFFIX K_Pst
	USEION k READ ek WRITE ik
	RANGE gK_Pstbar, gK_Pst, ik, offm, slom, offmt, slomt, taummin, taumdiff1, taumdiff2, offh, sloh, offht1, offht2, sloht, tauhmean, tauhdiff1, tauhdiff2
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gK_Pstbar = 0.00001 (S/cm2)
	offm = -11 (mV)
	slom = 12 (mV)
	offmt = -10 (mV)
	slomt = 38.46153846 (mV)
	taummin = 1.25 (ms)
        taumdiff1 = 175.03 (ms)
        taumdiff2 = 13 (ms)
	offh = -64 (mV)
	sloh = 11 (mV)
	offht1 = -65 (mV)
	offht2 = -85 (mV)
	sloht = 48 (mV)
	tauhmean = 360 (ms)
	tauhdiff1 = 1010 (ms)
        tauhdiff2 = 24 (ms/mV)

}

ASSIGNED	{
	v	(mV)
	ek	(mV)
	ik	(mA/cm2)
	gK_Pst	(S/cm2)
	mInf
	mTau
	hInf
	hTau
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gK_Pst = gK_Pstbar*m*m*h
	ik = gK_Pst*(v-ek)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt, thresh
  qt = 2.3^((34-21)/10)
  thresh = offmt-slomt/2*log(taumdiff1/taumdiff2)
	UNITSOFF
		mInf =  (1/(1 + exp((offm-v)/slom)))
                if(v<thresh){
		    mTau =  (taummin+taumdiff1*exp(-(offmt-v)/slomt))/qt
                } else {
                    mTau = ((taummin+taumdiff2*exp((offmt-v)/slomt)))/qt
                }
		hInf =  1/(1 + exp(-(offh-v)/sloh))
		hTau =  (tauhmean+(tauhdiff1-tauhdiff2*(offht1-v))*exp(-((offht2-v)/sloht)^2))/qt
	UNITSON
}