Effects of electric fields on cognitive functions (Migliore et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:190559
The paper discusses the effects induced by an electric field at power lines frequency on neuronal activity during cognitive processes.
Reference:
1 . Migliore R, De Simone G, Leinekugel X, Migliore M (2017) The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons. Eur J Neurosci 45:1024-1031 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Extracellular Fields; Gamma oscillations; Pattern Recognition; Spatio-temporal Activity Patterns;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Migliore, Rosanna [rosanna.migliore at cnr.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h; Glutamate;
/
MiglioreEJN2016
readme.html
distr.mod *
distr2.mod
fzap.mod *
Gfluct.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstimm.mod *
xtrau.mod *
anatscale.hoc *
biophys.hoc
biophysPLAST.hoc
calcd.hoc
calcrxcu.hoc
ef_fig.png
efheader.hoc *
fig1B.hoc
fixnseg.hoc *
freq50.xfm
geo5038804.hoc *
init.hoc
interpxyzu.hoc *
LTDran.hoc
media-st er.xfm
mosinit.hoc
Napical.txt
no_ef_fig.png
Plast.hoc
setnseg.hoc *
setpointersu.hoc *
soma.hoc
synapses.hoc
voltage.ses
zapstimu.hoc
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	q10=1
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax}
}