Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223031
In this paper we develop morphologically detailed multi-compartment models of Hippocampal CA1 interneuron specific 3 interneurons using cell current-clamp recordings and dendritic calcium imaging data. In doing so, we developed several variant models, as outlined in the associated README.html file.
Reference:
1 . Guet-McCreight A, Camiré O, Topolnik L, Skinner FK (2016) Using a Semi-Automated Strategy to Develop Multi-Compartment Models That Predict Biophysical Properties of Interneuron-Specific 3 (IS3) Cells in Hippocampus. eNeuro [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I Na,p; I A;
Gap Junctions:
Receptor(s):
Gene(s): Kv3.1 KCNC1; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Active Dendrites; Activity Patterns; Depolarization block; Detailed Neuronal Models; Ion Channel Kinetics;
Implementer(s): Guet-McCreight, Alexandre [alexandre.guet.mccreight at mail.utoronto.ca];
Search NeuronDB for information about:  I Na,p; I Na,t; I A;
/
Guet-McCreightEtAl2016
SD
IKa.mod *
ingauss.mod *
Ksoma.mod *
Nap.mod *
Nasoma.mod *
init.hoc
IS3_SD_TopModel.hoc
                            
TITLE KA
: K-A current for hippocampal interneurons from Lien et al (2002)
: M.Migliore Jan. 2003

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}

NEURON {
	SUFFIX Ika
	USEION k READ ek WRITE ik
	RANGE  gbar, ik
	GLOBAL minf, hinf, htau, mtau
}

PARAMETER {
	gbar = 0.0002   (mho/cm2)
	celsius		(degC)
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0h=0.17
	vhalfh=-105	(mV)
	q10=3
	hmin=5		(ms)
}

ASSIGNED {
	ik 	(mA/cm2)
	minf 		
	mtau 	(ms)
	hinf	 	
	htau 	(ms)
	
}
 
INITIAL {
        trates(v)
        m=minf
        h=hinf
}

STATE {m h}

BREAKPOINT {
        SOLVE state METHOD cnexp
	ik = gbar*m*h*(v - ek)
} 

DERIVATIVE state {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v(mV)) {  
	LOCAL qt
        qt=q10^((celsius-23(degC))/10(degC))
        minf = (1/(1 + exp(-(v+41.4(mV))/26.6(mV))))^4
	mtau=0.5(ms)/qt
        hinf = 1/(1 + exp((v+78.5(mV))/6(mV)))
	htau = a0h*1(ms/mV)*(v-vhalfh)/qt
	if (htau<hmin/qt) {htau=hmin/qt}
}