Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223649
" ... We hypothesized that currents are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. For such a grouping to occur, the currents within one module should have minimal functional interference with currents belonging to other modules. This condition is satisfied if the gating functions of currents in the same module are grouped together on the voltage axis; in contrast, such functions are segregated along the voltage axis for currents belonging to different modules. We tested this hypothesis using four published example case models and found it to be valid for these classes of neurons. ..."
Reference:
1 . Alturki A, Feng F, Nair A, Guntu V, Nair SS (2016) Distinct current modules shape cellular dynamics in model neurons. Neuroscience 334:309-331 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus; Amygdala;
Cell Type(s): Abstract single compartment conductance based cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Activity Patterns; Oscillations; Methods; Olfaction;
Implementer(s):
/
AlturkiEtAl2016
1_Hemond
Original
readme.html *
cacumm.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod *
h.mod *
KahpM95.mod *
kaprox.mod *
kd.mod *
kdrca1.mod *
km.mod *
na3n.mod *
naxn.mod *
ca3b-cell1zr.hoc *
ca3b-cell1zr.ses *
fixnseg.hoc *
geo-cell1zr.hoc *
mosinit_orig.hoc *
screenshot.jpg *
                            
TITLE n-calcium channel
: n-type calcium channel


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
	celsius 		(degC)
	gcanbar=.0003 (mho/cm2)
	ki=.001 (mM)
	cai=50.e-6 (mM)
	cao = 2  (mM)
	q10=5
	mmin = 0.2
	hmin = 3
	a0m =0.03
	zetam = 2
	vhalfm = -14
	gmm=0.1	
}


NEURON {
	SUFFIX can
	USEION ca READ cai,cao WRITE ica
        RANGE gcanbar, ica, gcan       
        GLOBAL hinf,minf,taum,tauh
}

STATE {
	m h 
}

ASSIGNED {
	ica (mA/cm2)
        gcan  (mho/cm2) 
        minf
        hinf
        taum
        tauh
}

INITIAL {
        rates(v)
        m = minf
        h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gcan = gcanbar*m*m*h*h2(cai)
	ica = gcan*ghk(v,cai,cao)

}

UNITSOFF
FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (degC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION alph(v(mV)) {
	alph = 1.6e-4*exp(-v/48.4)
}

FUNCTION beth(v(mV)) {
	beth = 1/(exp((-v+39.0)/10.)+1.)
}

FUNCTION alpm(v(mV)) {
	alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}

FUNCTION betm(v(mV)) {
	betm = 0.046*exp(-v/20.73)
}

FUNCTION alpmt(v(mV)) {
  alpmt = exp(0.0378*zetam*(v-vhalfm)) 
}

FUNCTION betmt(v(mV)) {
  betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) 
}

UNITSON

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        m' = (minf - m)/taum
        h' = (hinf - h)/tauh
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a, b, qt
        qt=q10^((celsius-25)/10)
        a = alpm(v)
        b = 1/(a + betm(v))
        minf = a*b
	taum = betmt(v)/(qt*a0m*(1+alpmt(v)))
	if (taum<mmin/qt) {taum=mmin/qt}
        a = alph(v)
        b = 1/(a + beth(v))
        hinf = a*b
:	tauh=b/qt
	tauh= 80
	if (tauh<hmin) {tauh=hmin}
}