Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:230326
" ... Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. ..."
Reference:
1 . Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [PubMed]
2 . Zylbertal A, Yarom Y, Wagner S (2017) The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study Front. Comput. Neurosci. 11(85):1-16 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): Na/Ca exchanger; Na/K pump; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Reaction-diffusion; Synaptic Plasticity; Active Dendrites; Olfaction;
Implementer(s): Zylbertal, Asaph [asaph.zylbertal at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Sodium; Na/Ca exchanger; Na/K pump;
/
L5PC_converted
mod
Ca_HVA.mod
Ca_LVAst.mod
cadp.mod
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
nadp.mod
Nap_Et2.mod *
naSyn.mod
NaTa_t.mod *
NaTs2_t.mod *
ncx.mod
SK_E2.mod *
SKv3_1.mod *
                            
: Sodium ion accumulation with radial and longitudinal diffusion, buffering and pumping


NEURON {
    THREADSAFE
    SUFFIX nadp
    USEION na READ nao, nai, ina WRITE nai, ina, ena
    NONSPECIFIC_CURRENT ik_pump
    RANGE ina_pmp, TotalPump, ik_ratio, na, pump, pumpna, k4_coeff, DNa_coeff, initial_na
    GLOBAL vrat, DNa, k1, k2, k3, k4, change_ena, fix_na
}

:DEFINE Nannuli 4

UNITS {
    (molar) = (1/liter)
    (mM) = (millimolar)
    (um) = (micron)
    (mA) = (milliamp)
    (mV) = (millivolt)
    FARADAY = (faraday) (10000 coulomb)
    R = (k-mole) (joule/degC)    
    PI = (pi) (1)
    (mol) = (1)

}

PARAMETER {

    DNa = 0.6 (um2/ms)

    k1 = 1.0 (/mM3-ms)

    k2 = 0.001 (/ms)
    
    k3 = 0.3 (/ms)
                            : to eliminate pump, set TotalPump to 0 in hoc
    TotalPump = 1e-14 (mol/cm2)
    
    ik_ratio = -0.66666666 (1)

    change_ena = 1 (1)

    k4_coeff = 1.0 (1)
    DNa_coeff = 1.0 (1)

    fix_na = 0 (1)

}

ASSIGNED {
    diam (um)
    L (um)
    ina (mA/cm2)
    nai (mM)
:    vrat[Nannuli] : numeric value of vrat[i] equals the volume
                 : of annulus i of a 1um diameter cylinder
                 : multiply by diam^2 to get volume per um length
    
    k4          (/mM3-ms)

    nao (mM)
    ena (mV)

    ina_pmp (mA/cm2)
    parea (um)

    ik_pump (mA/cm2)
	celsius

    initial_na (mM)

    :k4_coeff (1)



}

CONSTANT { volo = 1e10 (um2) }

STATE {
    : na[0] is equivalent to nai
    na (mM) <1e-3>

    pump (mol/cm2)
    pumpna (mol/cm2)

}


BREAKPOINT {


    SOLVE state METHOD sparse

    ina = ina_pmp
    ik_pump = ik_ratio*ina_pmp

}

LOCAL factors_done

INITIAL {
	MUTEXLOCK
    k4=(((nai/nao)^3)*k1*k3)/k2    :Set the equilibrium at nai0_na_ion
    parea = PI*diam
    vrat = PI*0.25
    pump = TotalPump/(1 + (nai*k1/k2))
    pumpna = TotalPump - pump
:    if (factors_done == 0) {    : flag becomes 1 in the first segment
:        factors_done = 1        : all subsequent segments will have
:        factors()               : vrat = 0 unless vrat is GLOBAL
:    }

    na = nai
    initial_na = nai
:    FROM i=0 TO Nannuli-1 {
:        na[i] = nai

:    }
	MUTEXUNLOCK
}

:LOCAL frat[Nannuli]     : scales the rate constants for model geometry

:PROCEDURE factors() {
:    LOCAL r, dr2
:    r = 1/2                 : starts at edge (half diam)
:    dr2 = r/(Nannuli-1)/2   : full thickness of outermost annulus,
                            : half thickness of all other annuli
:    vrat[0] = 0
:    frat[0] = 2*r
:    FROM i=0 TO Nannuli-2 {
:        vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2  : interior half
:        r = r - dr2
:        frat[i+1] = 2*PI*r/(2*dr2)              : outer radius of annulus
                                                : div by distance between centers
:        r = r - dr2
:        vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
:    }
:}


KINETIC state {
    COMPARTMENT diam*diam*vrat {na}
    COMPARTMENT (1e10)*parea {pump pumpna}
    COMPARTMENT volo {nao}

    LONGITUDINAL_DIFFUSION DNa*DNa_coeff*diam*diam*vrat {na}

    :pump
    ~ 3 na + pump <-> pumpna (k1*parea*(1e10), k2*parea*(1e10))
    ~ pumpna <-> pump + 3 nao (k3*parea*(1e10), k4*k4_coeff*parea*(1e10))

    CONSERVE pump + pumpna = TotalPump * parea * (1e10)
    ina_pmp = FARADAY*(f_flux - b_flux)/parea

    : all currents except pump
    ~ na << (-(ina-ina_pmp)*PI*diam/(FARADAY)) : ina is Na efflux

    :FROM i=0 TO Nannuli-2 {
    :    ~ na[i] <-> na[i+1] (DNa*frat[i+1], DNa*frat[i+1])
    :}
    if (fix_na) {
        na = initial_na
    }
    nai = na
    if (change_ena == 1) {
        ena = ((R*(273.15+celsius))/(FARADAY*10))*log(nao/nai)
    }
    else {
        ena = 60.
    }
}