L5 PFC pyramidal neurons (Papoutsi et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:230811
" ... Here, we use a modeling approach to investigate whether and how the morphology of the basal tree mediates the functional output of neurons. We implemented 57 basal tree morphologies of layer 5 prefrontal pyramidal neurons of the rat and identified morphological types which were characterized by different response features, forming distinct functional types. These types were robust to a wide range of manipulations (distribution of active ionic mechanisms, NMDA conductance, somatic and apical tree morphology or the number of activated synapses) and supported different temporal coding schemes at both the single neuron and the microcircuit level. We predict that the basal tree morphological diversity among neurons of the same class mediates their segregation into distinct functional pathways. ..."
Reference:
1 . Papoutsi A, Kastellakis G, Poirazi P (2017) Basal tree complexity shapes functional pathways in the prefrontal cortex. J Neurophysiol 118:1970-1983 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I h; I L high threshold; I T low threshold; I N; I R; I K,Ca; I_AHP; I_Ks; I Na,p; I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA; GabaB;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I h; I K,Ca; I_Ks; I R; I_AHP; Gaba; Glutamate;
/
PapoutsiEtAl2017
mod_files
ampa.mod
ampain.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
gabaa.mod *
gabaain.mod
gabab.mod *
h.mod
iks_in.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdr_in.mod
kdrD.mod *
naf.mod
naf_in.mod
nap.mod *
NMDA.mod
NMDA_syn.mod
vecstim.mod
                            
TITLE t-type calcium channel with high threshold for activation
: used in somatic and dendritic regions 
:
: 
: Updated to use CVode --Carl Gold 08/10/03


NEURON {
	SUFFIX cat
	USEION ca READ cai, eca    
        :USEION Ca WRITE iCa VALENCE 2
        : The T-current does not activate calcium-dependent K-currents
        RANGE gcatbar, iCa
        RANGE gcatbar, ica
	GLOBAL hinf, minf
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {           :parameters that can be entered when function is called in cell-setup 
:	gcatbar = 0.1e-7   (cm/s)  : initialized conductance
	gcatbar = 0   (mho/cm2)  : initialized conductance
	zetam = -3
	zetah = 5.2
	vhalfm =-36 (mV)
	vhalfh =-68 (mV)
	tm0=1.5(ms)
	th0=10(ms)
}



ASSIGNED {     : parameters needed to solve DE
	v            (mV)
	celsius      (degC)
:	iCa          (mA/cm2)
	ica          (mA/cm2)
	cai          (mM)       :5e-5 initial internal Ca++ concentration
	eca          (mV)       : initial external Ca++ concentration
        minf
        hinf
}


STATE {	
	m 
	h 
}  

INITIAL {
	rates(v)
        m = minf
        h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp

:	ecat = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
:	iCa = gcatbar*m*m*h*(v-eca)	: dummy calcium current induced by this channel
	ica = gcatbar*m*m*h*(v-eca)	: dummy calcium current induced by this channel

}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
	LOCAL z, eci, eco
	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
	eco = co*efun(z)
	eci = ci*efun(-z)
	:high cao charge moves inward
	:negative potential charge moves inward
	ghk = (.001)*2*FARADAY*(eci - eco)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}


DERIVATIVE states {
	rates(v)
	m' = (minf -m)/tm0
	h'=  (hinf - h)/th0
}


PROCEDURE rates(v (mV)) { 
        LOCAL a, b
        
	a = alpm(v)
	minf = 1/(1+a)
        
        b = alph(v)
	hinf = 1/(1+b)
}



FUNCTION alpm(v(mV)) {
UNITSOFF
  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alph(v(mV)) {
UNITSOFF
  alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}