Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:231427
This work (published in "Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons", Doron et al, Cell Reports, 2017), examines the effect of timed inhibition over dendritic NMDA spikes on L5PC (Based on Hay et al., 2011) and CA1 cell (Based on Grunditz et al. 2008 and Golding et al. 2001).
Reference:
1 . Doron M, Chindemi G, Muller E, Markram H, Segev I (2017) Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 21:1550-1561 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s): NMDA; GabaA; AMPA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
reproduction
readme.txt
ampa.mod
Ca_HVA.mod
Ca_LVAst.mod *
cad.mod *
cadiffus.mod
CaDynamics_E2.mod *
canmda.mod *
car.mod *
gabaa.mod *
gabab.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
nmda.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod *
ProbUDFsyn2_lark.mod *
SK_E2.mod *
SKv3_1.mod *
SynExp5NMDA.mod *
cell1.asc *
cellmorphology.hoc *
create_data_for_figure_01.py
create_data_for_figure_02.py
create_data_for_figure_03.py *
create_data_for_figure_03_control.py
create_data_for_figure_03_Dt_10.py *
create_data_for_figure_03_Dt_40.py *
data_same_excitation.pickle
iniparameter.hoc
L5PCbiophys3.hoc
L5PCbiophys3_noActive.hoc
mosinit.hoc
plot_figure_01.py
plot_figure_02.py
plot_figure_03.py
plot_figure_04.py
plot_figure_05.py
plot_figure_06.py
spikes_num.pickle
spine.hoc
TTC.hoc
                            
TITLE AMPA and NMDA receptor with presynaptic short-term plasticity 


COMMENT
AMPA and NMDA receptor conductance using a dual-exponential profile
presynaptic short-term plasticity based on Fuhrmann et al. 2002
Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009
Etay: changed weight to be equal for NMDA and AMPA, gmax accessible in Neuron

ENDCOMMENT


NEURON {

        POINT_PROCESS ProbAMPA
        RANGE tau_r_AMPA, tau_d_AMPA, tau_r_NMDA, tau_d_NMDA
        RANGE Use, u, Dep, Fac, u0, weight_NMDA
        RANGE i, i_AMPA, i_NMDA, g_AMPA, g_NMDA, e, gmax, mgVoltageCoeff
        NONSPECIFIC_CURRENT i
	POINTER rng
}

PARAMETER {

        tau_r_AMPA = 0.2   (ms)  : dual-exponential conductance profile
        tau_d_AMPA = 1.7    (ms)  : IMPORTANT: tau_r < tau_d
        tau_r_NMDA = 0.00000001   (ms) : dual-exponential conductance profile
        tau_d_NMDA = 0.00000002     (ms) : IMPORTANT: tau_r < tau_d
        Use = 1.0   (1)   : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values) 
        Dep = 100   (ms)  : relaxation time constant from depression
        Fac = 10   (ms)  :  relaxation time constant from facilitation
        e = 0     (mV)  : AMPA and NMDA reversal potential
	mg = 1   (mM)  : initial concentration of mg2+
	mgVoltageCoeff = 0.08 (mV) : the coefficient for the voltage dependance of the equation
        mggate
    	gmax = .001 (uS) : weight conversion factor (from nS to uS)
    	u0 = 0 :initial value of u, which is the running value of Use
}

COMMENT
The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1 
for comparison with Pr to decide whether to activate the synapse or not
ENDCOMMENT
   
VERBATIM

#include<stdlib.h>
#include<stdio.h>
#include<math.h>

#ifndef NRN_VERSION_GTEQ_8_2_0
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
#define RANDCAST
#else
#define RANDCAST (Rand*)
#endif

ENDVERBATIM
  

ASSIGNED {

        v (mV)
        i (nA)
	i_AMPA (nA)
	i_NMDA (nA)
        g_AMPA (uS)
	g_NMDA (uS)
        factor_AMPA
	factor_NMDA
	rng
	weight_NMDA
}

STATE {

        A_AMPA       : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_r_AMPA
        B_AMPA       : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_d_AMPA
	A_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA
        B_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA
}

INITIAL{

        LOCAL tp_AMPA, tp_NMDA
        
	A_AMPA = 0
        B_AMPA = 0
	
	A_NMDA = 0
	B_NMDA = 0
        
	tp_AMPA = (tau_r_AMPA*tau_d_AMPA)/(tau_d_AMPA-tau_r_AMPA)*log(tau_d_AMPA/tau_r_AMPA) :time to peak of the conductance
	tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance
        
	factor_AMPA = -exp(-tp_AMPA/tau_r_AMPA)+exp(-tp_AMPA/tau_d_AMPA) :AMPA Normalization factor - so that when t = tp_AMPA, gsyn = gpeak
        factor_AMPA = 1/factor_AMPA
	
	factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak
        factor_NMDA = 1/factor_NMDA
   
}

BREAKPOINT {

        SOLVE state METHOD cnexp
	mggate = 1 / (1 + exp(mgVoltageCoeff * -(v)) * (mg / 3.57 (mM))) :mggate kinetics - Jahr & Stevens 1990
        g_AMPA = (1) * gmax * (B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA
	g_NMDA = 0*gmax*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics
        i_AMPA = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal
	i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal
	i = i_AMPA + i_NMDA
}

DERIVATIVE state{

        A_AMPA' = -A_AMPA/tau_r_AMPA
        B_AMPA' = -B_AMPA/tau_d_AMPA
	A_NMDA' = -A_NMDA/tau_r_NMDA
        B_NMDA' = -B_NMDA/tau_d_NMDA
}


NET_RECEIVE (weight,weight_AMPA, weight_NMDA, Pv, Pr, u, tsyn (ms)){
	
	weight_AMPA = weight
	weight_NMDA = weight
	:printf("NMDA weight = %g\n", weight_NMDA)

        INITIAL{
                Pv=1
                u=u0
                tsyn=t
            }

        : calc u at event-
        if (Fac > 0) {
                u = u*exp(-(t - tsyn)/Fac) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
           } else {
                  u = Use  
           } 
           if(Fac > 0){
                  u = u + Use*(1-u) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
           }    

        
            Pv  = 1 - (1-Pv) * exp(-(t-tsyn)/Dep) :Probability Pv for a vesicle to be available for release, analogous to the pool of synaptic
                                                 :resources available for release in the deterministic model. Eq. 3 in Fuhrmann et al.
            Pr  = u * Pv                         :Pr is calculated as Pv * u (running value of Use)
            Pv  = Pv - u * Pv                    :update Pv as per Eq. 3 in Fuhrmann et al.
            :printf("Pv = %g\n", Pv)
            :printf("Pr = %g\n", Pr)
            tsyn = t
                
		   if (erand() < Pr){
	
                    A_AMPA = A_AMPA + weight_AMPA*factor_AMPA
                    B_AMPA = B_AMPA + weight_AMPA*factor_AMPA
		    A_NMDA = A_NMDA + weight_NMDA*factor_NMDA
                    B_NMDA = B_NMDA + weight_NMDA*factor_NMDA

                }
}

PROCEDURE setRNG() {
VERBATIM
    {
        /**
         * This function takes a NEURON Random object declared in hoc and makes it usable by this mod file.
         * Note that this method is taken from Brett paper as used by netstim.hoc and netstim.mod
         * which points out that the Random must be in negexp(1) mode
         */
        void** pv = (void**)(&_p_rng);
        if( ifarg(1)) {
            *pv = nrn_random_arg(1);
        } else {
            *pv = (void*)0;
        }
    }
ENDVERBATIM
}

FUNCTION erand() {
VERBATIM
	    //FILE *fi;
        double value;
        if (_p_rng) {
                /*
                :Supports separate independent but reproducible streams for
                : each instance. However, the corresponding hoc Random
                : distribution MUST be set to Random.negexp(1)
                */
                value = nrn_random_pick(RANDCAST _p_rng);
		        //fi = fopen("RandomStreamMCellRan4.txt", "w");
                //fprintf(fi,"random stream for this simulation = %lf\n",value);
                //printf("random stream for this simulation = %lf\n",value);
                return value;
        }else{
ENDVERBATIM
                : the old standby. Cannot use if reproducible parallel sim
                : independent of nhost or which host this instance is on
                : is desired, since each instance on this cpu draws from
                : the same stream
                erand = exprand(1)
VERBATIM
        }
ENDVERBATIM
        erand = value
}