Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:231427
This work (published in "Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons", Doron et al, Cell Reports, 2017), examines the effect of timed inhibition over dendritic NMDA spikes on L5PC (Based on Hay et al., 2011) and CA1 cell (Based on Grunditz et al. 2008 and Golding et al. 2001).
Reference:
1 . Doron M, Chindemi G, Muller E, Markram H, Segev I (2017) Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 21:1550-1561 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s): NMDA; GabaA; AMPA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
reproduction
readme.txt
ampa.mod
Ca_HVA.mod
Ca_LVAst.mod *
cad.mod *
cadiffus.mod
CaDynamics_E2.mod *
canmda.mod *
car.mod *
gabaa.mod *
gabab.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
nmda.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod *
ProbUDFsyn2_lark.mod *
SK_E2.mod *
SKv3_1.mod *
SynExp5NMDA.mod *
cell1.asc *
cellmorphology.hoc *
create_data_for_figure_01.py
create_data_for_figure_02.py
create_data_for_figure_03.py *
create_data_for_figure_03_control.py
create_data_for_figure_03_Dt_10.py *
create_data_for_figure_03_Dt_40.py *
data_same_excitation.pickle
iniparameter.hoc
L5PCbiophys3.hoc
L5PCbiophys3_noActive.hoc
mosinit.hoc
plot_figure_01.py
plot_figure_02.py
plot_figure_03.py
plot_figure_04.py
plot_figure_05.py
plot_figure_06.py
spikes_num.pickle
spine.hoc
TTC.hoc
                            
#!/usr/bin/python

import matplotlib
matplotlib.use('Agg') 
from neuron import h
from neuron import gui
import matplotlib.pyplot as plt
import numpy as np
import sys
import pickle
import time

h.load_file("nrngui.hoc")
h.load_file("import3d.hoc")
h.load_file("cellmorphology.hoc")
h.load_file("iniparameter.hoc")

h('''objref all_spines
all_spines = new SectionList()''')

h("forall insert cadiffus")


def place_NMDA(nmdaCond):
  nmda_eStimlist.append(h.NetStim())
  nmda_eStimlist[-1].interval = 1
  nmda_eStimlist[-1].number = 1
  nmda_eStimlist[-1].start = 100
  nmda_eStimlist[-1].noise = 0
  nmda_eSynlist.append(h.nmda(0.5))
  nmda_ePreconlist.append(h.NetCon(nmda_eStimlist[-1], nmda_eSynlist[-1]))
  nmda_ePreconlist[-1].weight[0] = nmdaCond
  nmda_ePreconlist[-1].delay = 0

def place_AMPA(ampaCond):
  ampa_eStimlist.append(h.NetStim())
  ampa_eStimlist[-1].interval = 1
  ampa_eStimlist[-1].number = 1
  ampa_eStimlist[-1].start = 100
  ampa_eStimlist[-1].noise = 0
  ampa_eSynlist.append(h.ampa(0.5))
  ampa_ePreconlist.append(h.NetCon(ampa_eStimlist[-1], ampa_eSynlist[-1]))
  ampa_ePreconlist[-1].weight[0] = ampaCond
  ampa_ePreconlist[-1].delay = 0

def place_GABA(gabaCond):
  iStimlist.append(h.NetStim())
  iStimlist[-1].interval = 1
  iStimlist[-1].number = 1
  iStimlist[-1].start = 100000
  iStimlist[-1].noise = 0                   
  iSynlist.append(h.ProbUDFsyn2_lark( (branch_length - (number_of_spines / 2)) / branch_length))
  iSynlist[-1].tau_r = 0.18
  iSynlist[-1].tau_d = 5
  iSynlist[-1].e = - 80
  iSynlist[-1].Dep = 0
  iSynlist[-1].Fac = 0
  iSynlist[-1].Use = 0.6
  iSynlist[-1].u0 = 0
  iSynlist[-1].gmax = gabaCond
  iPreconlist.append(h.NetCon(iStimlist[-1], iSynlist[-1]))
  iPreconlist[-1].weight[0] = 1
  iPreconlist[-1].delay = 0


locs = ['basal','apical']
branches = ['dendA2_01100','dendA5_01111111111111111010']

number_of_spines = 20

for loc_ind in range(len(locs)):
  branch = branches[loc_ind]

  h('access ' + branch)
  branch_length = h.L
  h('nseg = %d ' % branch_length)
  center_of_distribution =  (branch_length - (number_of_spines / 2))

  h.pop_section()
  spine_segs = np.arange((center_of_distribution) - (number_of_spines / 2), (center_of_distribution) + (number_of_spines / 2), 1) / branch_length

  for seg in spine_segs:
    h('''{create %s_spine_neck_%s}'''  % (locs[loc_ind], str(seg).replace('.','')))
    h('''{%s connect %s_spine_neck_%s(0),%f}''' % (branch, locs[loc_ind], str(seg).replace('.',''),seg))
    h('''{access %s_spine_neck_%s}''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''necklength = 1  /*spine neck length in um*/''')
    h('''neckdiam = 0.1 /*spine neck diameter*/''')
    h('''%s_spine_neck_%s {nseg = 2
                pt3dclear()
                for j = 0, nseg-1 {
                    ty = (j*necklength)/(nseg-1)
                    pt3dadd(97.58,ty,20.87,neckdiam)
                    }
                }''' % (locs[loc_ind], str(seg).replace('.','')))

    h('''{create %s_spine_head_%s}''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''{%s_spine_neck_%s connect %s_spine_head_%s(0), 1}''' % (locs[loc_ind], str(seg).replace('.',''), locs[loc_ind], str(seg).replace('.','')))
    h('''{access %s_spine_head_%s}''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''spineradius = 0.297''')
    h('''%s_spine_head_%s {nseg = 7
                pt3dclear()
                for i = 0, nseg-1 {
                    ty = -(i*2*spineradius)/(nseg-1)
                    td = 2*sqrt(spineradius^2-(ty+spineradius)^2)
                    if (td<neckdiam){
                        td = neckdiam
                        } 
                        pt3dadd(97.58,ty+1,20.87,td)
                    }
                }''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''%s_spine_head_%s all_spines.append''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''%s_spine_neck_%s all_spines.append''' % (locs[loc_ind], str(seg).replace('.','')))
    h('''
    %s_spine_head_%s {
        insert pas  e_pas=Vleak  g_pas=spinefactor/Rm  Ra=global_ra  cm=spinefactor*Cm 
        insert canmda
  //      insert car
        insert cadiffus
    }
    %s_spine_neck_%s{
        insert pas  e_pas=Vleak  g_pas=0.00005  Ra=global_ra  cm=spinefactor*Cm 
        insert cadiffus
        
    }''' % (locs[loc_ind], str(seg).replace('.',''),locs[loc_ind], str(seg).replace('.','')))
    h('access %s_spine_neck_%s' % (locs[loc_ind], str(seg).replace('.','')))
    h('%s_spine_neck_%s.diam = 0.0394' % (locs[loc_ind], str(seg).replace('.','')))
    h.pop_section()


  h('''initchannels()

  proc init() {

       /* add initchannels() to init(), so parameter changes show up */
       initchannels()       
       finitialize(v_init)
       fcurrent()
  }
  ''')

  h.tstop = 300
  h.dt = 0.025;
  h.v_init = -65
  h.celsius = 34

  nmda_eSynlist = []
  nmda_ePreconlist = []
  nmda_eStimlist = []

  ampa_eSynlist = []
  ampa_ePreconlist = []
  ampa_eStimlist = []

  iPreconlist = []
  iStimlist = []
  iSynlist = []

  single_spine_AMPA_nS = 0.8
  single_spine_NMDA_nS = 0.8
  single_spine_GABA_nS = 0.5

  nmdaCond =  (single_spine_NMDA_nS / (1000 * 0.000045))
  ampaCond =  (single_spine_AMPA_nS / (1000 * 0.00001))
  gabaCond = (single_spine_GABA_nS * 0.001)

  middle =  (spine_segs)[(number_of_spines / 2)]

  for seg in spine_segs:
    h('access %s_spine_head_%s' % (locs[loc_ind], str(seg).replace('.','')))
    place_NMDA(nmdaCond)
    place_AMPA(ampaCond)
    im = h.Impedance()
    im.loc(0.5)
    im.compute(0)
    Rin = im.input(0.5)
    h.pop_section()

  inhibitory_locations = ['branch','spine']

  h('access ' + branch)
  h('nseg = %d ' % branch_length)
  place_GABA(gabaCond)
  h.pop_section()

  h('access %s_spine_head_%s' % (locs[loc_ind], str(middle).replace('.','')))
  place_GABA(gabaCond)
  h.pop_section()

  time_traces = {}

  delays = [-100000] + range(80, 160, 1)
  # spine_neck_diams = np.linspace(0.0394, 0.1, 3)
  spine_neck_diams = [0.0394]

  spine_head_voltage_traces = {}
  spine_head_current_traces = {}
  spine_head_cai_traces = {}

  colors = {-100000 : 'black', 110 : 'green', 120 : 'blue', 130 : 'red'}


  y_labels = {}
  y_labels['spine_head_voltage_traces'] = 'voltage (mV)'
  y_labels['spine_head_current_traces'] = 'pA'
  y_labels['spine_head_cai_traces'] = r'$\mathregular{[Ca^{2+}}$] (mM)'

  font = {'weight':'regular', 'size':8}
  matplotlib.rc('font', **font)
  for spine_neck_diam in spine_neck_diams:
    for spine_seg in spine_segs:
      h('%s_spine_neck_%s.diam=%f' % (locs[loc_ind], str(spine_seg).replace('.',''), spine_neck_diam))
    
    spine_head_voltage_traces[spine_neck_diam] = {}
    spine_head_current_traces[spine_neck_diam] = {}
    spine_head_cai_traces[spine_neck_diam] = {}
    
    mean_spine_head_voltage_traces_integral_full = []
    mean_spine_head_cai_traces_integral_full = []
    local_spine_head_voltage_traces_integral_full = []
    local_spine_head_cai_traces_integral_full = []

    for inhibitory_location in inhibitory_locations:
      spine_head_voltage_traces[spine_neck_diam][inhibitory_location] = {}
      spine_head_current_traces[spine_neck_diam][inhibitory_location] = {}
      spine_head_cai_traces[spine_neck_diam][inhibitory_location] = {}

      for delay in delays:
        spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay] = []
        spine_head_current_traces[spine_neck_diam][inhibitory_location][delay] = []
        spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay] = []
        
        time_trace = h.Vector()
        for spine_seg in spine_segs:
          spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay].append(h.Vector())
          spine_head_current_traces[spine_neck_diam][inhibitory_location][delay].append(h.Vector())
          spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay].append(h.Vector())
        
        time_trace.record(h._ref_t)
        for ind in range(len(spine_segs)):
          spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay][ind].record(eval('h.%s_spine_head_%s' % (locs[loc_ind], str((spine_segs)[ind]).replace('.','')))(0.5)._ref_v)
          spine_head_current_traces[spine_neck_diam][inhibitory_location][delay][ind].record(nmda_eSynlist[ind]._ref_i)
          spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay][ind].record(eval('h.%s_spine_head_%s' % (locs[loc_ind], str((spine_segs)[ind]).replace('.','')))(0.5)._ref_cai)
        
        for stim in iStimlist:
          stim.start = delay
        for syn in iSynlist:
          syn.gmax = 0
        
        iSynlist[inhibitory_locations.index(inhibitory_location)].gmax = gabaCond
        
        h.init()
        h.run()
        
        spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay] = np.array(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay])
        spine_head_current_traces[spine_neck_diam][inhibitory_location][delay] = np.array(spine_head_current_traces[spine_neck_diam][inhibitory_location][delay])
        spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay]     = np.array(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay])
      
      mean_spine_head_voltage_traces_integral = []
      mean_spine_head_cai_traces_integral = []
      local_spine_head_voltage_traces_integral = []
      local_spine_head_cai_traces_integral = []
      

      for delay in delays[1:]:
        mean_spine_head_voltage_traces_integral.append(np.mean((np.sum(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay] + 65, axis=1)) / (np.sum(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delays[0]] + 65, axis=1)), axis=0))
        mean_spine_head_cai_traces_integral.append(np.mean((np.sum(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay], axis=1)) / (np.sum(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delays[0]], axis=1)), axis=0))
        local_spine_head_voltage_traces_integral.append((np.sum(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)] + 65)) / (np.sum(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delays[0]][(number_of_spines / 2)] + 65)))
        local_spine_head_cai_traces_integral.append((np.sum(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)])) / (np.sum(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delays[0]][(number_of_spines / 2)])))

      mean_spine_head_voltage_traces_integral_full.append(mean_spine_head_voltage_traces_integral)
      mean_spine_head_cai_traces_integral_full.append(mean_spine_head_cai_traces_integral)
      local_spine_head_voltage_traces_integral_full.append(local_spine_head_voltage_traces_integral)
      local_spine_head_cai_traces_integral_full.append(local_spine_head_cai_traces_integral)

      if (locs[loc_ind] == 'apical') and (spine_neck_diam == spine_neck_diams[0]):
        for delay in [-100000, 120, 130]:
          fig = plt.figure(figsize=(1.7, 1.7))
          ax = fig.add_subplot(111)
          
          plt.plot(time_trace, spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delays[0]][(number_of_spines / 2)], linewidth=1, color='black',linestyle='--', dashes=(3,3))
          plt.plot(time_trace, spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)], linewidth=1, color='black')
          
          ax.fill_between(time_trace, spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)], -65, where = (np.mean(spine_head_voltage_traces[spine_neck_diam][inhibitory_location][delay], axis=0) > -65), color=colors[delay], alpha=0.3)
          ax.yaxis.set_ticks([-70, -50, -30, -10])
          ax.yaxis.set_ticklabels([-70, -50, -30, -10])
          plt.text(delay + 10, 2.5, '%d msec' % (delay - 100), color = colors[delay], fontsize=8)
          ax.arrow(delay, 10, 0, -7.5, head_width=6, width=2, head_length=2, fc=colors[delay], ec=colors[delay])      
          plt.axis([time_trace[0], time_trace[-1], -70, 10])
          
          ax.spines['top'].set_visible(False)
          ax.spines['right'].set_visible(False)
          ax.spines['left'].set_visible(1)
          ax.spines['bottom'].set_visible(1)  
          ax.spines['left'].set_linewidth(1)
          ax.spines['bottom'].set_linewidth(1)
          ax.tick_params(direction='out', width=1, size=5)
          ax.yaxis.set_ticks_position('left')
          ax.xaxis.set_ticks_position('bottom')       
          ax.xaxis.set_ticks([0,100,200,300])
          ax.xaxis.set_ticklabels([-100, 0, 100, 200])
          ax.set_xlabel('time (msec)', fontsize=8)
          ax.set_ylabel('voltage (mV)', fontsize=8)
          fig.set_size_inches(1.2, 1.2)
          if inhibitory_location == 'branch':
            plt.savefig('figure_05_b_%d.pdf' % (delay), transparent=True, bbox_inches='tight', format='pdf', dpi=300, pad_inches=0)
          if inhibitory_location == 'spine':
            plt.savefig('figure_05_e_%d.pdf' % (delay), transparent=True, bbox_inches='tight', format='pdf', dpi=300, pad_inches=0)
          plt.close('all')
        
          fig = plt.figure(figsize=(1.7, 1.7))
          ax = fig.add_subplot(111)
          
          plt.plot(time_trace, spine_head_cai_traces[spine_neck_diam][inhibitory_location][delays[0]][(number_of_spines / 2)], linewidth=1, color='black',linestyle='--', dashes=(3,3))
          plt.plot(time_trace, spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)], linewidth=1, color='black')
          
          ax.fill_between(time_trace, spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay][(number_of_spines / 2)], 0, where = (np.mean(spine_head_cai_traces[spine_neck_diam][inhibitory_location][delay], axis=0) > -65), color=colors[delay], alpha=0.3)
          
          plt.axis([time_trace[0], time_trace[-1], 0, 1])
          
          ax.spines['top'].set_visible(False)
          ax.spines['right'].set_visible(False)
          ax.spines['left'].set_visible(1)
          ax.spines['bottom'].set_visible(1)  
          ax.spines['left'].set_linewidth(1)
          ax.spines['bottom'].set_linewidth(1)
          ax.tick_params(direction='out', width=1, size=5)
          ax.yaxis.set_ticks_position('left')
          ax.xaxis.set_ticks_position('bottom')       
          ax.xaxis.set_ticks([0,100,200,300])
          ax.xaxis.set_ticklabels([-100, 0, 100, 200])
          ax.set_xlabel('time (msec)', fontsize=8)
          ax.set_ylabel(r'$\mathregular{[Ca^{2+}}$] (mM)', fontsize=8)
          fig.set_size_inches(1.2, 1.2)
          if inhibitory_location == 'branch':
            plt.savefig('figure_05_c_%d.pdf' % (delay), transparent=True, bbox_inches='tight', format='pdf', dpi=300, pad_inches=0)
          if inhibitory_location == 'spine':
            plt.savefig('figure_05_f_%d.pdf' % (delay), transparent=True, bbox_inches='tight', format='pdf', dpi=300, pad_inches=0)
          plt.close('all')    

  if (locs[loc_ind] == 'apical'):
    font = {'weight':'regular', 'size':8, 'family':'sans-serif', 'sans-serif':'Arial'}
    matplotlib.rc('font', **font)
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12,12), gridspec_kw={'height_ratios':[20,1]}, sharex=True)
    for ax in [ax1, ax2]:
      ax.plot(delays[1:], local_spine_head_voltage_traces_integral_full[0], linewidth = 1, color="red", label='Inhibition on dendrite'); 
      ax.plot(delays[1:], local_spine_head_voltage_traces_integral_full[1], linewidth = 1, color="green", label='Inhibition on spine'); 
      
      ax.spines['top'].set_visible(False)
      ax.spines['right'].set_visible(False)
      ax.spines['left'].set_linewidth(1)
      ax.spines['bottom'].set_linewidth(1)
      ax.tick_params(direction='out', width=1, size=5)
      ax.yaxis.set_ticks_position('left')
      ax.xaxis.set_ticks_position('bottom')   
      ax.xaxis.set_ticks(np.array([-15,0, 15, 30, 45, 60]) + 100)
      ax.xaxis.set_ticklabels([-15,0, 15, 30, 45, 60], fontsize=10)
    ax2.set_xlabel(r'$\mathregular{\Delta t}$ Inhibition vs excitation (msec)', fontsize = 10, fontweight = 'regular')
    ax1.set_ylabel('Time Integral of \nNMDA Spike (Norm.)', fontsize = 10, fontweight = 'regular')
    ax1.axis([delays[1], 160, 0.3625, 1.01])
    ax2.axis([delays[1], 160, 0, 0.1])
    kwargs = dict(linewidth = 1, transform=ax1.transAxes, color='k', clip_on=False)
    ax1.plot((-0.015, 0.015), (0 + 0.005, 0 - 0.005), **kwargs)  
    kwargs = dict(linewidth = 1, transform=ax2.transAxes, color='k', clip_on=False)
    ax2.plot((-0.015, 0.015), (1 + 0.1, 1 - 0.1), **kwargs)  
    ax1.spines['top'].set_visible(False)
    ax2.spines['top'].set_visible(False)
    ax1.spines['bottom'].set_visible(False)
    ax1.xaxis.set_ticks_position('none')
    plt.subplots_adjust(hspace = 0.1) 
    ax1.yaxis.set_ticks([round(0.4,2), round(0.55,3), round(0.7,2), round(0.85,3), round(1.0,2)])
    ax1.yaxis.set_ticklabels([round(0.4,2), round(0.55,3), round(0.7,2), round(0.85,3), round(1.0,2)], fontsize=10)
    ax2.yaxis.set_ticks([round(0.0,2)])
    ax2.yaxis.set_ticklabels([round(0.0,2)], fontsize=10)
    ax1.yaxis.set_label_coords(- 0.2, 0.4)
    fig.set_size_inches(3, 3)
    fig.savefig('figure_05_g.pdf', transparent=True, bbox_inches='tight', format='pdf', dpi=300)
    plt.close('all')

    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12), gridspec_kw={'height_ratios':[20,1]}, sharex=True)
    for ax in [ax1, ax2]:
      ax.plot(delays[1:], local_spine_head_cai_traces_integral_full[0], linewidth = 1, color="red", label='Inhibition on dendrite'); 
      ax.plot(delays[1:], local_spine_head_cai_traces_integral_full[1], linewidth = 1, color="green", label='Inhibition on spine'); 
      ax.spines['top'].set_visible(False)
      ax.spines['right'].set_visible(False)
      ax.spines['left'].set_linewidth(1)
      ax.spines['bottom'].set_linewidth(1)
      ax.tick_params(direction='out', width=1, size=5)
      ax.yaxis.set_ticks_position('left')
      ax.xaxis.set_ticks_position('bottom')   
      ax.xaxis.set_ticks(np.array([-15,0, 15, 30, 45, 60]) + 100)
      ax.xaxis.set_ticklabels([-15,0, 15, 30, 45, 60], fontsize=10)
    ax2.set_xlabel(r'$\mathregular{\Delta t}$ Inhibition vs excitation (msec)', fontsize = 10, fontweight = 'regular')
    ax1.set_ylabel('Time Integral of \n' + r'$\mathregular{[Ca^{2+}]}$ (Norm.)', fontsize = 10, fontweight = 'regular')
    ax1.axis([delays[1], 160, 0.3625, 1.01])
    ax2.axis([delays[1], 160, 0, 0.1])
    kwargs = dict(linewidth = 1, transform=ax1.transAxes, color='k', clip_on=False)
    ax1.plot((-0.015, 0.015), (0 + 0.005, 0 - 0.005), **kwargs)  
    kwargs = dict(linewidth = 1, transform=ax2.transAxes, color='k', clip_on=False)
    ax2.plot((-0.015, 0.015), (1 + 0.1, 1 - 0.1), **kwargs)  
    ax1.spines['top'].set_visible(False)
    ax2.spines['top'].set_visible(False)
    ax1.spines['bottom'].set_visible(False)
    ax1.xaxis.set_ticks_position('none')
    plt.subplots_adjust(hspace = 0.1) 
    ax1.yaxis.set_ticks([round(0.4,2), round(0.55,3), round(0.7,2), round(0.85,3), round(1.0,2)])
    ax1.yaxis.set_ticklabels([round(0.4,2), round(0.55,3), round(0.7,2), round(0.85,3), round(1.0,2)], fontsize=10)
    ax2.yaxis.set_ticks([round(0.0,2)])
    ax2.yaxis.set_ticklabels([round(0.0,2)], fontsize=10)
    ax1.yaxis.set_label_coords(- 0.2, 0.4)
    fig.set_size_inches(3, 3)
    fig.savefig('figure_05_h.pdf', transparent=True, bbox_inches='tight', format='pdf', dpi=300)
    plt.close('all')