Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:239145
This is the L5 pyramidal tract neuron (L5PT) model from Egger, Narayanan et al., Neuron 2020. It allows investigating how synaptic inputs evoked by different sensory stimuli are integrated by the complex intrinsic properties of L5PTs. The model is constrained by anatomical measurements of the subcellular synaptic input patterns to L5PT neurons, in vivo measurements of sensory-evoked responses of different populations of neurons providing these synaptic inputs, and in vitro measurements constraining the biophysical properties of the soma, dendrites and axon (note: the biophysical model is based on the work by Hay et al., Plos Comp Biol 2011). The model files provided here allow performing simulations and analyses presented in Figures 3, 4 and 5.
Reference:
1 . Egger R, Narayanan RT, Guest JM, Bast A, Udvary D, Messore LF, Das S, de Kock CP, Oberlaender M (2020) Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Calcium; I h; I M; I K; I Na,t; I Na,p; I K,Ca;
Gap Junctions:
Receptor(s): AMPA; GabaA; NMDA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON; Python;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Sensory processing; Stimulus selectivity; Synaptic Integration;
Implementer(s): Egger, Robert [robert.egger at nyumc.org];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I K; I M; I h; I K,Ca; I Calcium; Gaba; Glutamate;
/
model_publication
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTg.mod *
NaTs2_t.mod *
netgaba.mod
netglutamate.mod
SK_E2.mod *
SKv3_1.mod *
vecevent.mod
                            
COMMENT
//****************************//
// Created by Alon Polsky 	//
//    apmega@yahoo.com		//
//		2010			//
//****************************//
based on Sun et al 2006
Modified 2015 by Robert Egger
to include facilitation variable
as modeled by Varela et al. 1997
ENDCOMMENT
TITLE GABAA synapse activated by the network
NEURON {
	POINT_PROCESS gaba_syn
	NONSPECIFIC_CURRENT i
	RANGE i,ggaba
	RANGE decaygaba,dgaba,taudgaba
	RANGE facilgaba,fgaba,taufgaba
	:RANGE R,D
	RANGE risetime,decaytime,e 
}
PARAMETER {
	e= -60.0	(mV)
	risetime=1	(ms)	:2
	decaytime=20(ms)	:40

	v		(mV)
	taudgaba=200	(ms)
	decaygaba=0.8
	taufgaba=200    (ms)
	facilgaba=0.0
}
ASSIGNED {
	i		(nA)  
	ggaba
    factor     : conductance normalization factor
}

STATE {
	dgaba
	fgaba
	R
	D
}

INITIAL {
	LOCAL tp
    dgaba=1 
    fgaba=1
	R=0
	D=0
	ggaba=0
	
    tp = (risetime*decaytime)/(decaytime - risetime) * log(decaytime/risetime)
    factor = -exp(-tp/risetime) + exp(-tp/decaytime)
    factor = 1/factor
}
BREAKPOINT {
	SOLVE state METHOD cnexp
	ggaba=D-R
	i=(1e-3)*ggaba*(v-e)
}
NET_RECEIVE(weight) {
    R = R + factor*weight*dgaba*fgaba
    D = D + factor*weight*dgaba*fgaba
    dgaba = dgaba* decaygaba
    fgaba = fgaba + facilgaba
}
DERIVATIVE state {
	R'=-R/risetime
	D'=-D/decaytime
	dgaba'=(1-dgaba)/taudgaba
	fgaba'=(1-fgaba)/taufgaba

}