Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:240116
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
Reference:
1 . Cavarretta F, Burton SD, Igarashi KM, Shepherd GM, Hines ML, Migliore M (2018) Parallel odor processing by mitral and middle tufted cells in the olfactory bulb. Sci Rep 8:7625 [PubMed]
2 . Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M (2016) Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 10:67 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron granule TC GABA cell; Olfactory bulb (accessory) mitral cell; Olfactory bulb main tufted cell external; Olfactory bulb short axon cell;
Channel(s): I A; I Na,t; I_Ks; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; GabaA; NMDA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Action Potential Initiation; Active Dendrites; Long-term Synaptic Plasticity; Synaptic Integration; Synchronization; Pattern Recognition; Spatio-temporal Activity Patterns; Temporal Pattern Generation; Sensory coding; Sensory processing; Olfaction;
Implementer(s): Cavarretta, Francesco [francescocavarretta at hotmail.it]; Hines, Michael [Michael.Hines at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule TC GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I_Ks; Gaba; Glutamate;
/
modeldb-bulb3d
sim
ampanmda.mod
distrt.mod *
fi.mod
fi_stdp.mod *
gap.mod
Gfluct.mod
kamt.mod
kdrmt.mod
ks.mod
naxn.mod
orn.mod
ThreshDetect.mod *
all.py
all2all.py *
assembly.py
balance.py *
bindict.py
binsave.py
binspikes.py
blanes.hoc
blanes.py
blanes_exc_conn.txt
blanes6.dic
bulb3dtest.py
cancel.py
catfiles.sh
cellreader.py
cellwriter.py
cfg27.py
common.py
complexity.py *
convertdic.py
destroy_model.py
determine_connections.py
distribute.py *
dsac.py
Eta.txt *
fillgloms.py
fixnseg.hoc *
g_conn_stats.py
gapjunc.py
gen_weights.py
geodist.py
geodist.txt
getmitral.py
gidfunc.py
GJ.py
gj_nrn.hoc
Glom.py *
granule.hoc
granules.py
graphmeat.py
grow.py
growdef.py *
growout.py
job
Kod.txt *
lateral_connections.py
loadbalutil.py *
lpt.py *
mcgrow.py
MCrealSoma.py *
mgrs.py
misc.py
mitral.hoc
mkassembly.py
mkmitral.py
modeldata.py
mtgrow.py
MTrealSoma.py
MTrealSoma2.py
mtufted.hoc
multisplit_distrib.py
net_mitral_centric.py
Nod.txt *
odors.py
odorstim.py
odstim2.txt *
pad.txt *
params.py
parrun.py
pathdist.py
realgloms.txt *
runsim.py
spike2file.hoc *
spk2weight.py
split.py
subsetsim.py
test_complexity.py
txt2bin.py
util.py *
vrecord.py
weightsave.py
                            
TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002

NEURON {
    THREADSAFE
	SUFFIX kamt
	USEION k READ ek WRITE ik
	RANGE  gbar, q10
	GLOBAL minf, mtau, hinf, htau
}

PARAMETER {
	gbar = 0.002   	(mho/cm2)	
								
	celsius
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0m=0.04
	vhalfm=-45
	zetam=0.1
	gmm=0.75

	a0h=0.018
	vhalfh=-70
	zetah=0.2
	gmh=0.99

	sha=9.9
	shi=5.7
	
	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
	hinf 		htau (ms)	 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m*h*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-24)/10)
        minf = 1/(1 + exp(-(v-sha-7.6)/14))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))

        hinf = 1/(1 + exp((v-shi+47.4)/6))
	htau = beth(v)/(qt*a0h*(1+alph(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}

FUNCTION alph(v(mV)) {
  alph = exp(zetah*(v-vhalfh)) 
}

FUNCTION beth(v(mV)) {
  beth = exp(zetah*gmh*(v-vhalfh)) 
}