STDP and BDNF in CA1 spines (Solinas et al. 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:244412
Storing memory traces in the brain is essential for learning and memory formation. Memory traces are created by joint electrical activity in neurons that are interconnected by synapses and allow transferring electrical activity from a sending (presynaptic) to a receiving (postsynaptic) neuron. During learning, neurons that are co-active can tune synapses to become more effective. This process is called synaptic plasticity or long-term potentiation (LTP). Timing-dependent LTP (t-LTP) is a physiologically relevant type of synaptic plasticity that results from repeated sequential firing of action potentials (APs) in pre- and postsynaptic neurons. T-LTP is observed during learning in vivo and is a cellular correlate of memory formation. T-LTP can be elicited by different rhythms of synaptic activity that recruit distinct synaptic growth processes underlying t-LTP. The protein brain-derived neurotrophic factor (BDNF) is released at synapses and mediates synaptic growth in response to specific rhythms of t-LTP stimulation, while other rhythms mediate BDNF-independent t-LTP. Here, we developed a realistic computational model that accounts for our previously published experimental results of BDNF-independent 1:1 t-LTP (pairing of 1 presynaptic with 1 postsynaptic AP) and BDNF-dependent 1:4 t-LTP (pairing of 1 presynaptic with 4 postsynaptic APs). The model explains the magnitude and time course of both t-LTP forms and allows predicting t-LTP properties that result from altered BDNF turnover. Since BDNF levels are decreased in demented patients, understanding the function of BDNF in memory processes is of utmost importance to counteract Alzheimer’s disease.
Reference:
1 . Solinas SMG, Edelmann E, Leßmann V, Migliore M (2019) A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 15:e1006975 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I_KD; I K; I h; I A; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Facilitation; Long-term Synaptic Plasticity; Short-term Synaptic Plasticity; STDP;
Implementer(s): Solinas, Sergio [solinas at unipv.it]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I A; I K; I h; I Calcium; I_KD; Glutamate;
/
SolinasEtAl2019
mod_files
BDNF.mod
cad.mod
cagk.mod
cal2.mod
can2.mod
cat.mod
distr.mod *
ghknmda.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstims.mod *
RM_eCB.mod
Wghkampa_preML.mod
                            
COMMENT
BDNF kinetics

Includes extracellular and intracellular mechanisms.

Based on data provided by V. Lessmann and Kurt ???

Developers: Solinas & Migliore 2017

BDNF release 
The proBDNF-containing vesicles are released with 100 s delay 
after an increase of cai. To model this we must explicity model BDNF vesicles
as events triggered by a cai thereshold that execute a net_send with a probability 
that is proportional to the inverse of the time step.

ENDCOMMENT

NEURON {
    POINT_PROCESS BDNF
    USEION ca READ cai	: Weight update requires cai 
    : USEION bdnf READ bdnfi WRITE bdnfi VALENCE 0
    
    RANGE max_BDNF_rel_delay, theta_cai_BDNF, max_cai_BDNF, BDNF_prel, fused_vesicles, duration_BDNF_release
    RANGE proBDNF_uptake,PC_uptake,mBDNF_uptake, TrkB, proBDNF_fraction
    RANGE tau_LTP14, theta_gAMPA, sigma_gAMPA, alpha_gAMPA, shift_gAMPA, v_BDNF, is, intracell_signaling
    POINTER randObjPtr
    POINTER gAMPA
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
    (molar) = (1/liter)
    (mM) = (millimolar)
    FARADAY = (faraday) (coulomb)
    R = (k-mole) (joule/degC)
}

PARAMETER {
    cai (mM)
    
    dt (ms)
       
    :BDNF
    : [Ca]i threshold for BDNF vesicle release
    theta_cai_BDNF = 0.11 (mM)
    max_cai_BDNF = 0.13 (mM)
    
    max_BDNF_rel_delay = 400e3 (ms)
    duration_BDNF_release = 1800e3 :1800e3 (ms) :30*60*1e3 = 30 min
    proBDNF_uptake = 0.00001 (mM/ms)    
    mBDNF_uptake = 0.00001 (mM/ms)    
    PC_uptake = 0.00001 (mM/ms)    
    
    : Time step for BDNF vesicle release
    cai_integration_time_step = 1 (ms)
    : Normalisation factor to convert [Ca]i * cai_integration_time_step to a unitless number
    alpha_dt_cai = 1.2 (1/mM 1/ms)
    
    : Vesicles
    n_vesicles = 300 (1)
    v_BDNF = 0.002 (mM)
    proBDNF_fraction = 0.7
    v_PC = 0.002 (mM)
    
    : Cleavage
    tau_cleave = 10000.0 (ms/mM) : alpha_cleave = 1e-4 (mM/ms)
    :rb_BDNF = 0 : uncleaving is not allowd ??
    
    :TrkB
    tau_LTP14 = 180e3 :1800e3 (ms) : 1 min = 60e3 ms, 30 min = 1800e3 ms
    theta_TrkB = 0.0002 (mM)
    sigma_TrkB = 0.00001 (mM)
    
    gbar_AMPA = 1 (nS)
    scale_AMPA = 100 (1)
    alpha_gAMPA = 0.5
    theta_gAMPA = 0.5
    sigma_gAMPA = 0.1
    shift_gAMPA = 0    
    
    : intracell signaling is udes to have a decay of [Ca]i efficacy on BDNF release
    : so that only stimuli given at 0.5 Hz are effective on triggering BDNF release 
    : while stimuli given at 0.05 Hz are not effective
    is_decay = 0.1e-3 (/ms) : tau = 10 sec, decay rate of intracell_signaling (is)
    
    : max_fused_vesicles = 0
}

ASSIGNED {
    BDNF_prel (1)
    randObjPtr
    cai_th_crossed (1)
    gAMPA (nS)
    gAMPA_g
    alpha_LTP14 (mM/ms)
    mBDNF_fraction
    fusion_delay (ms)
    v_prel_norm (1)
    n_avail_vesicles (1)
    cai_factor (1)
    : alpha_cleave = 1 / tau_cleave
}

STATE {
    : v_proBDNF (mM)
    : v_PC (mM)
    fused_vesicles (1)
    proBDNF (mM)
    mBDNF (mM)
    ppBDNF (mM) 
    PC (mM)  : tPA in paper, PC in Lessman sketch
    proBDNF_PC (mM)
    TrkB (mM)
    proBDNF_removed (mM)
    mBDNF_removed (mM)
    PC_removed (mM)
    is (1)
    intracell_decay (1)
    intracell_signaling (mM)
}

INITIAL {    
    fused_vesicles = 0
    cai_th_crossed = 0
        
    proBDNF = 0 
    mBDNF = 0 
    ppBDNF = 0
    PC = 0
    proBDNF_removed = 0 
    mBDNF_removed = 0 
    ppBDNF = 0
    PC_removed = 0
    is = 0    
    intracell_decay = 0
    intracell_signaling = 0
    mBDNF_fraction = 1 - proBDNF_fraction

    alpha_LTP14 = 1/tau_LTP14
    
    TrkB = 0 (mM)
    : v_prel_norm = 1/(n_vesicles * alpha_dt_cai * cai_integration_time_step * theta_cai_BDNF)
    n_avail_vesicles = n_vesicles
}

BREAKPOINT {
    SOLVE kstates METHOD sparse
    : gAMPA = gbar_AMPA * TrkB
    : gAMPA = gAMPA_g
}

KINETIC kstates {
    
    
    : if (t/60e3 > 0.1) {
    : 	if (t/60e3 < 4) {
    : 	    fused_vesicles = max_fused_vesicles
    : 	    : printf("fused %g maxfu %g\n",fused_vesicles,max_fused_vesicles)
    : 	}
    : }
    
    
    ~ is <-> intracell_decay (is_decay,0)
    : printf("isk %g\n",is)
    : Release the proBDNF, mBDNF, and PC
    : Release is mantianed for a time of x
    : Protracted vesicular release 
    : printf("BDNF curr: %g\n",v_BDNF * proBDNF_fraction * fused_vesicles / duration_BDNF_release)
    ~ proBDNF << (v_BDNF * proBDNF_fraction * fused_vesicles / duration_BDNF_release)
    ~ mBDNF << (v_BDNF * mBDNF_fraction * fused_vesicles / duration_BDNF_release)
    ~ PC << (v_PC * fused_vesicles / duration_BDNF_release)
    
    : proBDNF cleavage
    ~ proBDNF + PC <-> proBDNF_PC (1/tau_cleave,0)  
    ~ proBDNF_PC <-> ppBDNF + mBDNF + PC (1/tau_cleave,0)  
    : Uptake or diffusion from synaptic cleft
    ~ proBDNF <-> proBDNF_removed (proBDNF_uptake, 0)
    ~ mBDNF <-> mBDNF_removed (mBDNF_uptake, 0)
    ~ PC <-> PC_removed (PC_uptake, 0)
    ~ fused_vesicles <-> fused_vesicles (0,0)

    : TrkB activation
    TrkB = mBDNF * sigh(mBDNF, theta_TrkB, sigma_TrkB)
    ~ TrkB <-> intracell_signaling (alpha_LTP14, 0)
    
    
    :gAMPA_g = gbar_AMPA * TrkB/scale_AMPA
    gAMPA = 1 + alpha_gAMPA * sigh(intracell_signaling, theta_gAMPA, sigma_gAMPA) + shift_gAMPA
    
}


FUNCTION sigh(x (mM), theta (mM), sigma (mM)) {
    : LOCAL e
    : e = (x - theta) / sigma
    : if ( -e > 700 ) {
    : 	printf("%f\t",(-(x - theta) / sigma))
    : }
    sigh = 1 / (1 + exp((theta - x) / sigma))
}

VERBATIM
#ifndef NRN_VERSION_GTEQ_8_2_0
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
#define RANDCAST
#else
#define RANDCAST (Rand*)
#endif
ENDVERBATIM

FUNCTION randGen() {
VERBATIM
   if (_p_randObjPtr) {
      /*
      :Supports separate independent but reproducible streams for
      : each instance. However, the corresponding hoc Random
      : distribution MUST be set to Random.uniform(0,1)
      */
      _lrandGen = nrn_random_pick(RANDCAST _p_randObjPtr);
   }else{
      hoc_execerror("Random object ref not set correctly for randObjPtr"," only via hoc Random");
   }
ENDVERBATIM
}
 
PROCEDURE setRandObjRef() {
VERBATIM
   void** pv4 = (void**)(&_p_randObjPtr);
   if (ifarg(1)) {
      *pv4 = nrn_random_arg(1);
   }else{
      *pv4 = (void*)0;
   }
ENDVERBATIM
}

FUNCTION min(x,y) { if (x<=y){ min = x }else{ min = y } }

NET_RECEIVE (weight (1)) { LOCAL prel, is_effect
    if ((flag == 0) && (cai_th_crossed == 0) ) { : the netcon is indicating that the theta_cai_BDNF was crossed
	cai_th_crossed = 1
	: step increase of intracell signaling caused by [Ca]i LTP14 threshold crossing
	is = is + 0.1
	
	: printf("is %g\n",is)
	: printf("Cai crossed th at t %g\n",t)
	: Calculate a probability of release proportional to cai e to dt only if there are vesicles for fusion
	if (n_avail_vesicles > 0) {
	    net_send(cai_integration_time_step,2) : keep on watching cai
	}
    }
    
    if (flag == 2 && n_avail_vesicles > 0) {
    	: Calculate a probability of release proportional to cai, cai_dt, :and number of available vesicles
	cai_factor = (cai - theta_cai_BDNF) / (max_cai_BDNF - theta_cai_BDNF)
	if (is > 0.15) {
	    is_effect = 1
	} else {
	    is_effect = 0
	}
	prel = alpha_dt_cai * cai_integration_time_step * min(1,cai_factor) * is_effect: * n_avail_vesicles/n_vesicles
	: prel = (1-((n_vesicles-n_avail_vesicles)/n_vesicles)^2) * alpha_dt_cai * cai_integration_time_step * cai
	: printf("Prel: vesicles, constant, cai_ratio %g\t%g\t%g\n", n_avail_vesicles/n_vesicles, alpha_dt_cai * cai_integration_time_step, (cai - theta_cai_BDNF) / (max_cai_BDNF - theta_cai_BDNF))
    	if ( randGen() < prel ) {
	    BDNF_prel = prel
    	    : Relase one BDNF vesicle in the future
    	    : printf("Release bdnf t %g\n",t)
	    : Calc the delay of vesicle fusion, :when many vesicles are available the delay is shorter
	    fusion_delay = max_BDNF_rel_delay * (1 - min(1,cai_factor)) * randGen()
    	    net_send(fusion_delay, 3)
	    n_avail_vesicles = n_avail_vesicles - 1
    	    : printf("future: dt %g\t%g\t%g\t%g\n", t+fusion_delay, max_BDNF_rel_delay, max_BDNF_rel_delay  * (1 - min(1,cai_factor)), (cai - theta_cai_BDNF) / (max_cai_BDNF - theta_cai_BDNF))
    	    : printf("Trigger bdnf release in the future: dt %g\t%g\t%g\t%g\n",BDNF_prel, t+fusion_delay, max_BDNF_rel_delay, n_avail_vesicles)
    	    :printf("Trigger bdnf release in the future: dt %g\t%g\t%g\n",BDNF_prel, cai, dt)
    	}
	: Continue releasing each ms till cai is above threshold only if there are vesicles available for fusion
    	if (cai > theta_cai_BDNF) {
	    if (n_avail_vesicles > 0) {
    		net_send(cai_integration_time_step,2) : keep on watching cai    
	    }
	} else {
	    cai_th_crossed = 0
	}
    }
    
    if (flag == 3) { 
	: Increase counter of fused vesicles
	fused_vesicles = fused_vesicles + 1
	: printf("Fusing a vesicle %g\t%g\n",fused_vesicles,t)
	net_send(duration_BDNF_release,4)
    }
    
    if (flag == 4) { 
	: Decrease counter of fused vesicles
	fused_vesicles = fused_vesicles - 1
    }
}