CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2019
mechanisms
ANsyn.mod *
bgka.mod *
burststim2.mod *
cad.mod
cadyn.mod *
cadyn_new.mod
cagk.mod *
cal.mod *
calH.mod *
cancr.mod *
car.mod *
cat.mod *
ccanl.mod *
gskch.mod *
h.mod *
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod *
iccr.mod *
ichan2.mod *
ichan2aa.mod *
ichan2bc.mod *
ichan2bs.mod *
ichan2vip.mod *
Ih.mod *
Ihvip.mod *
ikscr.mod *
kad.mod *
kadistcr.mod *
kap.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
kdrcr.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nafcr.mod *
nap.mod *
Nasoma.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
vecstim.mod *
                            
: STDP by Hines, changed to dual exponential (BPG 6-1-09)
: Modified by BPG 13-12-08
: Limited weights: max weight is wmax and min weight is wmin
: (initial weight is specified by netconn - usually set to wmin)
: Rhythmic GABAB suppresses conductance and promotes plasticity.
: When GABAB is low, conductance is high and plasticity is off.

NEURON {
	POINT_PROCESS STDPE2
	RANGE tau1, tau2, e, i, d, p, dtau, ptau, thresh, wmax, wmin
	RANGE g, gbdel, gblen, gbint, gscale
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau1=.1 (ms) <1e-9,1e9>
	tau2 = 10 (ms) <1e-9,1e9>
	e = 0	(mV)
	wmax = 0 (uS)
	wmin = 0 (uS)	: not used - use netconn weight instead (BPG)
	d = 0 <0,1>: depression factor (multiplicative to prevent < 0)
	p = 0.5 : potentiation factor (additive, non-saturating)
	dtau = 34 (ms) : depression effectiveness time constant
	ptau = 17 (ms) : Bi & Poo (1998, 2001)
	thresh = -20 (mV)	: postsynaptic voltage threshold
	gbdel = 100 (ms) <1e-9,1e9> : initial GABAB off interval (ms)
	gbint = 100 (ms) <1e-9,1e9> : GABAB off interval (ms)
	gblen = 100 (ms) <1e-9,1e9> : GABAB on length (ms)
	gscale = 0.1	: relative suppression by GABAB
}

ASSIGNED {
	v (mV)
	i (nA)
	tpost (ms)
	on
	g (uS)
	gs
	factor
}

STATE {
	C (uS)
	B (uS)
}

INITIAL {
	LOCAL tp
	if (tau1/tau2 > .9999) {
		tau1 = .9999*tau2
	}
	C = 0
	B = 0
	tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
	factor = -exp(-tp/tau1) + exp(-tp/tau2)
	factor = 1/factor
	gs=1
	on=0	: initially not plastic
	tpost = -1e9
	net_send(0, 1)
	net_send(gbdel, 3)	: initial GABAB off period
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = B - C
	i = g*gs*(v - e)
}

DERIVATIVE state {
	C' = -C/tau1
	B' = -B/tau2
}

NET_RECEIVE(w (uS), A, tpre (ms)) {
	INITIAL { A = 0  tpre = -1e9 }
	if (flag == 0) { : presynaptic spike  (after last post so depress)
:		printf("entry flag=%g t=%g w=%g A=%g tpre=%g tpost=%g\n", flag, t, w, A, tpre, tpost)
:		g = g + w + A	: only for single exp (BPG)
		C = C + (w + A)*factor
		B = B + (w + A)*factor
		tpre = t
		if (on == 1) {
			A = A * (1 - d*exp((tpost - t)/dtau))
		}
	}else if (flag == 2 && on == 1) { : postsynaptic spike
:		printf("entry flag=%g t=%g tpost=%g\n", flag, t, tpost)
		tpost = t
		FOR_NETCONS(w1, A1, tp) { : also can hide NET_RECEIVE args
:			printf("entry FOR_NETCONS w1=%g A1=%g tp=%g\n", w1, A1, tp)
			A1 = A1 + (wmax-w1-A1)*p*exp((tp - t)/ptau)
		}
	} else if (flag == 1) { : flag == 1 from INITIAL block
:		printf("entry flag=%g t=%g\n", flag, t)
		WATCH (v > thresh) 2
	}
	else if (flag == 3) { : plasticity control
		if (on == 0) { : start plasticity
			on = 1
			gs = gscale
			net_send(gblen, 3)
		}
		else { : end burst
			on = 0
			gs = 1
			net_send(gbint, 3)
		}
	}
}