CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2019
mechanisms
ANsyn.mod *
bgka.mod *
burststim2.mod *
cad.mod
cadyn.mod *
cadyn_new.mod
cagk.mod *
cal.mod *
calH.mod *
cancr.mod *
car.mod *
cat.mod *
ccanl.mod *
gskch.mod *
h.mod *
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod *
iccr.mod *
ichan2.mod *
ichan2aa.mod *
ichan2bc.mod *
ichan2bs.mod *
ichan2vip.mod *
Ih.mod *
Ihvip.mod *
ikscr.mod *
kad.mod *
kadistcr.mod *
kap.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
kdrcr.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nafcr.mod *
nap.mod *
Nasoma.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
vecstim.mod *
                            
TITLE Slow Ca-dependent potassium current
:
:   Ca++ dependent K+ current IC responsible for slow AHP
:   Differential equations
:
:   Model based on a first order kinetic scheme
:
:       + n cai <->     (alpha,beta)
:
:   Following this model, the activation fct will be half-activated at 
:   a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)
:
:   The mod file is here written for the case n=2 (2 binding sites)
:   ---------------------------------------------
:
:   This current models the "slow" IK[Ca] (IAHP): 
:      - potassium current
:      - activated by intracellular calcium
:      - NOT voltage dependent
:
:   A minimal value for the time constant has been added
:
:   Ref: Destexhe et al., J. Neurophysiology 72: 803-818, 1994.
:   See also: http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca
:   modifications by Yiota Poirazi 2001 (poirazi@LNC.usc.edu)
:   taumin = 0.5 ms instead of 0.1 ms	

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
    SUFFIX kca
    USEION k READ ek WRITE ik
    USEION ca READ cai
    RANGE  gk, gbar, m_inf, tau_m
    GLOBAL beta, cac
}


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
    (molar) = (1/liter)
    (mM) = (millimolar)
}


PARAMETER {
    v                (mV)
    celsius =  36    (degC)
    ek      = -80    (mV)
    cai     = 2.4e-5 (mM)            : initial [Ca]i
    gbar    = 0.01   (mho/cm2)
    beta    = 0.03   (1/ms)          : backward rate constant
    cac     = 0.025  (mM)            : middle point of activation fct
    taumin  = 0.5    (ms)            : minimal value of the time cst
    gk
}


STATE {
    m   : activation variable to be solved in the DEs
}               

ASSIGNED {: parameters needed to solve DE 
    ik      (mA/cm2)
    m_inf
    tau_m   (ms)
    tadj
}
BREAKPOINT { 
    SOLVE states METHOD derivimplicit
    gk = gbar*m*m*m     : maximum channel conductance
    ik = gk*(v - ek)    : potassium current induced by this channel
}

DERIVATIVE states { 
    evaluate_fct(v,cai)
    m' = (m_inf - m) / tau_m
}

UNITSOFF
INITIAL {
    :
    :  activation kinetics are assumed to be at 22 deg. C
    :  Q10 is assumed to be 3
    :
    tadj = 3 ^ ((celsius-22.0)/10) : temperature-dependent adjastment factor
    evaluate_fct(v,cai)
    m = m_inf
}

PROCEDURE evaluate_fct(v(mV),cai(mM)) {  LOCAL car
    car = (cai/cac)^2
    m_inf = car / ( 1 + car )      : activation steady state value
    tau_m =  1 / beta / (1 + car) / tadj
    if(tau_m < taumin) { tau_m = taumin }   : activation min value of time cst
}
UNITSON