Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Isolated_Dendrite_tauNKCC1__Fig9
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
cell_isolated_dendrite.hoc *
cell_soma_dendrite.hoc *
cell_soma_dendrite_1000um.hoc
cell_soma_dendrite_fine.hoc
Freq_PSC.ses
gabaA_Cl_HCO3.o
GABA-Stim_1xPSC_isolated_dendrite_GUI.hoc
GABA-Stim_2xPSC_Spatial_Sum_isolated_dendrite.hoc
GABA-Stim_2xPSC_Spatial_Sum_isolated_dendrite_enlarged_tauNKCC1.hoc
GABA-Stim_3xPSC_isolated_dendrite_GUI.hoc
GABA-Stim_5xPSC_Freq_isolated_dendrite.hoc
GABA-Stim_5xPSC_Freq_isolated_dendrite_back.hoc
GABA-Stim_5xPSC_Freq_isolated_dendrite_enlarged_tauNKCC1.hoc
GABA-Stim_5xPSC_Spatial_isolated_dendrite-Draft.hoc
init_Cldif_isolated_dendrite.hoc
Isolated_Dendrite.ses *
Isolated_Dendrite_Diff_Flux_1xGABA.ses
Isolated_Dendrite_Diff_Flux_3xGABA.ses
Isolated_Dendrite_Diff_Flux_Laptop.ses
start_GABA-Stim_2xPSC_Spatial_Sum_isolated_dendrite.hoc
start_GABA-Stim_2xPSC_Spatial_Sum_isolated_dendrite_enlarged_tauNKCC1.hoc
start_GABA-Stim_5xPSC_Freq_isolated_dendrite.hoc
start_GABA-Stim_5xPSC_Freq_isolated_dendrite_enlarged_tauNKCC1.hoc
start_procedure.hoc
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(314,154,1)}
{
xpanel("RunControl", 0)
v_init = -65
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 10000
xvalue("t","t", 2 )
tstop = 10000
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.5
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 2
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 5.54
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(9,129)
}
{
xpanel("cldif_CA3_NKCC1_HCO3 (Globals)", 0)
DCl_cldif_CA3_NKCC1_HCO3 = 10
xvalue("DCl_cldif_CA3_NKCC1_HCO3","DCl_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_NKCC1_cldif_CA3_NKCC1_HCO3 = 174000
xvalue("tau_NKCC1_cldif_CA3_NKCC1_HCO3","tau_NKCC1_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_passive_cldif_CA3_NKCC1_HCO3 = 321000
xvalue("tau_passive_cldif_CA3_NKCC1_HCO3","tau_passive_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
tau_hco3_cldif_CA3_NKCC1_HCO3 = 1000
xvalue("tau_hco3_cldif_CA3_NKCC1_HCO3","tau_hco3_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
cli_Start_cldif_CA3_NKCC1_HCO3 = 30
xvalue("cli_Start_cldif_CA3_NKCC1_HCO3","cli_Start_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
hco3i_Start_cldif_CA3_NKCC1_HCO3 = 14.1
xvalue("hco3i_Start_cldif_CA3_NKCC1_HCO3","hco3i_Start_cldif_CA3_NKCC1_HCO3", 1,"", 0, 0 )
vrat_cldif_CA3_NKCC1_HCO3[0] = 0.239983
xvalue("vrat_cldif_CA3_NKCC1_HCO3[0]","vrat_cldif_CA3_NKCC1_HCO3[0]", 0,"", 0, 1 )
xpanel(318,464)
}
{
xpanel("gaba[0] at dend(0.5)", 0)
xlabel("gaba[0] at dend(0.5)")
gabasyn.tau1 = 0.1
xvalue("tau1","gabasyn.tau1", 1,"", 0, 1 )
gabasyn.tau2 = 37
xvalue("tau2","gabasyn.tau2", 1,"", 0, 1 )
gabasyn.P = 0
xvalue("P","gabasyn.P", 1,"", 0, 1 )
gabasyn.icl = -5.93913e-112
xvalue("icl","gabasyn.icl", 0,"", 0, 1 )
gabasyn.ihco3 = -0
xvalue("ihco3","gabasyn.ihco3", 0,"", 0, 1 )
gabasyn.i = -5.93913e-112
xvalue("i","gabasyn.i", 0,"", 0, 1 )
gabasyn.g = 2.52952e-113
xvalue("g","gabasyn.g", 0,"", 0, 1 )
gabasyn.e = -0
xvalue("e","gabasyn.e", 0,"", 0, 1 )
gabasyn.A = 0
xvalue("A","gabasyn.A", 0,"", 0, 1 )
gabasyn.B = 2.49557e-113
xvalue("B","gabasyn.B", 0,"", 0, 1 )
xpanel(46,553)
}
{
save_window_ = new Graph(0)
save_window_.size(0,10000,-10,0)
scene_vector_[2] = save_window_
{save_window_.view(0, -10, 10000, 10, 919, 38, 522.9, 117.1)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("dend.icl( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,10000,0,1)
scene_vector_[3] = save_window_
{save_window_.view(0, 0, 10000, 1, 918, 529, 520.2, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("dend.cli(0.0) - dend.cli(0.01) ", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,11000,-2,4.47035e-008)
scene_vector_[4] = save_window_
{save_window_.view(0, -2, 11000, 2, 920, 271, 518.4, 139.6)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addvar("gabasyn.i", 1, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}