Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:253369
This models are used to evaluate which factors influence the GDP (giant depolarizing potential) induced [Cl-]I transients based on a initial model of P. Jedlicka
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2019) Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration Int J of Mol Sci [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Mouse; Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; Gaba;
/
LombardiEtAl2019
Real_Cell_Cl_HCO3_1GDP_Var-Cl-gPas__Fig2
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
VDpas.mod *
vecevent.mod *
Cell1_Cl_HCO3_GPas.hoc
GDP_Cl_HCO3_All_short.ses *
Single_GDP_101GABA_HCO3_Div_gPas_Div_Cl.hoc
Single_GDP_101GABA_P_0_Div_gPas_30_Cl.hoc
Single_GDP_101GABA_PGABA-0_Div_gPas_Div_Cl.hoc
Single_GDP_GABA_HCO3_VDpas_Div_pGABA_Div_Cl.hoc *
start_Single_GDP_101GABA_Div_Gpas_Div_Cl.hoc
start_Single_GDP_101GABA_p_0_Div_Gpas_Cl_30.hoc
start_Single_GDP_101GABA_PGABA-0_Div_gPas_Div_Cl.hoc
start_Single_GDP_101GABA_VDpas_Div_pGABA_Div_Cl.hoc
start_Test_Rinput_IClamp.hoc
Test_Rinput_IClamp.ses
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(369,889,1)}

//Begin I/V Clamp Electrode
{
load_file("electrod.hoc")
}
{
ocbox_=new Electrode(0)
execute("can_locate=1 sec=\"soma\" xloc=0.5 locate(0)", ocbox_)
execute("vc.dur[0]=0.1 vc.amp[0]=-65", ocbox_)
execute("vc.dur[1]=2.5 vc.amp[1]=10", ocbox_)
execute("vc.dur[2]=100 vc.amp[2]=-65", ocbox_)
execute("stim.del=50 stim.dur=200 stim.amp=-0.01", ocbox_)
execute("vcsteps=5", ocbox_)
execute("samp=stim.amp  store_vclamp() glyph()", ocbox_)
ocbox_ = ocbox_.v1
ocbox_.map("I/V Clamp Electrode", 1, 564, 239.4, 419.4)
}
objref ocbox_
//End I/V Clamp Electrode

{
xpanel("RunControl", 0)
v_init = -60
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 400
xvalue("t","t", 2 )
tstop = 400
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 14.08
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(156,156)
}
{
save_window_ = new Graph(0)
save_window_.size(0,400,-80,-50)
scene_vector_[3] = save_window_
{save_window_.view(0, -80, 400, 30, 681, 56, 912.6, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,400,-0.05,-9.31323e-010)
scene_vector_[4] = save_window_
{save_window_.view(0, -0.05, 400, 0.05, 686, 396, 904.5, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addvar("IClamp[0].i", 1, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}