CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:258867
The study shows that IPSCs mediated by a5-subunit containing GABAA receptors are strongly outward-rectifying generating 4-fold larger conductances above -50?mV than at rest. Experiments and modeling show that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation in a spatiotemporally controlled manner in fine dendrites of CA1 pyramidal cells. The files contain the NEURON code for Fig.8, Fig.S8 and Fig.S9 of the paper. The model is based on the model published by Bloss et al., 2017. Physiological properties of GABA synapses were modified as determined by optogenetic activation of inputs during voltage-clamp recordings in Schulz et al. 2018. Other changes include stochastic synaptic release and short-term synaptic plasticity. All changes of mechanisms and parameters are detailed in the Methods of the paper. Simulation can be run by starting start_simulation.hoc after running mknrndll. The files that model the individual figures have to be uncommented in start_simulation.hoc beforehand.
Reference:
1 . Schulz JM, Knoflach F, Hernandez MC, Bischofberger J (2018) Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear a5-GABAA receptors. Nat Commun 9:3576 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I h; I A;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Schulz, Jan M [j.schulz at unibas.ch];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I h; Gaba; Glutamate;
/
Alpha5_NMDA_CA1_pyr
README.html
dists.mod *
eff.mod *
exc.mod *
gabab.mod
h.mod
id.mod *
inh.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
syns.mod *
tonic.mod
activateExcitation.hoc
activateInhibition_JMS.hoc
addChannels_JMS.hoc
addExcitation_JMS.hoc
addVgatInhibition_JMS.hoc
channelParameters.hoc
Connect_Stimulator2ExcSyn.hoc
Connect_Stimulator2InhSyn.hoc
Fig8_tuft_NMDA_spike.hoc
FigS8_SR_SLM_burst_stim.hoc
FigS9_test_TI.hoc
flagVgatInhibition_JMS.hoc
Generate_Stimulator.hoc
getBranchOrder.hoc *
idMorph.hoc
inhibitionBiophysics_JMS.hoc
initializationAndRun.hoc *
loadMorph.hoc *
mosinit.hoc
naceaxon.nrn *
Print-to-File.hoc
processMorph.hoc *
proofreadMorph.hoc *
resetNSeg.hoc *
screenshot.png
start_simulation.hoc
synHelperScripts.hoc
SynStim_SR_SLM_control.hoc
SynStim_SR_SLM_noInh.hoc
SynStim_SR_SLM_redInh.hoc
SynStim_SR_SLM_TI.hoc
tuft_NMDA_spike_fast.hoc
tuft_NMDA_spike_noRect.hoc
twinApical.swc *
update_Synapses.hoc
                            
// ADD VGAT+ SYNAPSES TO MORPHOLOGY.

// Preallocate objects for inhibition.
totVgatAt = 100000
objref synGABA[totVgatAt],synGABArect[totVgatAt] //nsVgatAt[totVgatAt],ncVgatAt[totVgatAt],
objref synGABAB[totVgatAt] //nsGABAB[totVgatAt],ncGABAB[totVgatAt],

// This function takes a SectionRef and a vector with surface area synapse
// scaling and places the number of corresponding Vgat+ inhibitory synapses.
// Note that the low index of the first placed synapse needs to be specified
// in order to give indices to all of the generated synapse.
//
// $o1: SectionRef instance.  Contains the section to implement with the scaling
// 	rule.
// $o2: Vector instance.  Contains the scaling rule to implement.  If the
//	density is uniform across the branch (e.g., 0.1 synapses/um2), then
//	simply supply as 
//		foo = new Vector(1); foo.x[0] = 0.1; $o1 = foo
// 	Conversely, if
// 	there is spatial variation across the branch (say, 0.1 synapses/um2 in the
//	first third, 0.2 synapses/um2 in the second third, and 0.3 synapses/um2
// 	in the final third), then, supply as
//		foo = new Vector(3) ; foo.x[0] = 0.1, foo.x[1] = 0.2;
//			foo.x[2] = 0.3 ; $o1 = foo
// $3: numeric.  The index of the first synapse to be created and placed.
//
// The number of synapses added is returned.
func addVgatInhibition() {local nDiv,runningSa,synAdd,synCur,ii,jj
	
	nDiv = $o2.size() // number of divisions for the compartment

	synCur = $3
	// Place synapses.
	$o1.sec {
		for ii=1,nDiv{
			runningSa = 0
			synAdd=0 
			for(x,0){
				if(((ii-1)/nDiv)<x_eff(x)){
					if(x_eff(x)<(ii/nDiv+0.00000001)){
						runningSa += area(x)
						
						if(int(runningSa*($o2.x[ii-1]))>(synAdd+0.00001)){
							toAdd = int(runningSa*($o2.x[ii-1])-synAdd)
							for jj=1,toAdd{
								synCur = synCur + 1
								synAdd = synAdd + 1
								//print "\t",secname(),"\t",x,"\t",synCur-1
								synGABA[synCur-1] = new inhSyn(x)
								synGABA[synCur-1].vgat = 1
								synGABA[synCur-1].xEff = x_eff(x)
                                
								synGABArect[synCur-1] = new inhSyn(x)
								synGABArect[synCur-1].vgat = 1
								synGABArect[synCur-1].xEff = x_eff(x)
	
								synGABAB[synCur-1] = new GABABsyn(x)
								synGABAB[synCur-1].vgat = 1
								synGABAB[synCur-1].xEff = x_eff(x)
							}
						}else{
							toAdd = 0
						}
						vgatAt_syns(x) = toAdd
					}
				}
			}
		}
	}	

	return synCur-$3	
}

	
	synInd = 0 // first index to be used
	objref curSec // rolling SectionRef to currently accessed section
	
	// Define tuft densities and add tuft synapses.
	objref denVgatTuftTerm,denVgatTuftPar
	denVgatTuftTerm = new Vector(3)
		denVgatTuftTerm.x[0] = 0.09//0.075
		denVgatTuftTerm.x[1] = 0.11//0.085
		denVgatTuftTerm.x[2] = 0.135//0.1275
	denVgatTuftPar = new Vector(3)
		denVgatTuftPar.x[0] = 0.105
		denVgatTuftPar.x[1] = 0.105
		denVgatTuftPar.x[2] = 0.1
	nVgatTuft = 0
	
	forsec tuftList {
		curSec = new SectionRef()
		if(isTerm_id){
			numAdded = addVgatInhibition(curSec,denVgatTuftTerm,synInd)
		}else{
			numAdded = addVgatInhibition(curSec,denVgatTuftPar,synInd)
		}
		synInd+=numAdded
		nVgatTuft+=numAdded
	}
	
	print "The total number of VGAT+ synapses in tuft is: ",nVgatTuft
	
	// Define oblique densities and add oblique synapses.
	objref denVgatObl
	denVgatObl = new Vector(3)
		denVgatObl.x[0] = 0.04
		denVgatObl.x[1] = 0.04
		denVgatObl.x[2] = 0.04
	nVgatObl = 0
		
	forsec obliqueList {
		curSec = new SectionRef()
		numAdded = addVgatInhibition(curSec,denVgatObl,synInd)
		synInd+=numAdded
		nVgatObl+=numAdded
	}
	
	print "The total number of VGAT+ synapses in obliques is: ",nVgatObl
	
	// Define apical trunk densities and add synapses.
	// Note this includes a distance-dependent scaling factor.
	objref denVgatPrim,denVgatPrimTemp
	denVgatPrim = new Vector(1)
		denVgatPrim.x[0] = 0.056
	denVgatPrimTemp = new Vector(denVgatPrim.size()) // a rolling density with distant-dependent scaling
	nVgatPrim = 0
		
	soma.sec{distance()}
	
	forsec primList {
		curSec = new SectionRef()
		theDist = distance(0.5)
		
		scaleFact = 1-theDist/225
		if(scaleFact<0){scaleFact=0}
		
		denVgatPrimTemp.copy(denVgatPrim)
		denVgatPrimTemp.mul(scaleFact)
		
		numAdded = addVgatInhibition(curSec,denVgatPrimTemp,synInd)
		synInd+=numAdded
		nVgatPrim+=numAdded
	}
	print "The total number of VGAT+ synapses in main apical is: ",nVgatPrim
	
	// Add synapses to soma.  
	objref denVgatSoma
	denVgatSoma = new Vector(1)
		denVgatSoma.x[0] = 0 // 0.064 is correct, but don't want somatic inhibition
	nVgatSoma = 0
		
	soma.sec {
		curSec = new SectionRef()
		numAdded = addVgatInhibition(curSec,denVgatSoma,synInd)
		synInd+=numAdded
		nVgatSoma+=numAdded
	}
	// print "The total number of VGAT+ synapses in soma is: ",nVgatSoma
	
	// Add synapses to basals.
	objref denVgatBasalPrim,denVgatBasalSec,denVgatBasalTerm
	denVgatBasalPrim = new Vector(1)
		denVgatBasalPrim.x[0] = 0.09
	denVgatBasalSec = new Vector(1)
		denVgatBasalSec.x[0] = 0.08
	denVgatBasalTerm = new Vector(3)
		denVgatBasalTerm.x[0] = 0.05
		denVgatBasalTerm.x[1] = 0.05
		denVgatBasalTerm.x[2] = 0.03
	nVgatBasal=0
	
	forsec basalList {
		curSec = new SectionRef()
		if(isTerm_id){
			numAdded = addVgatInhibition(curSec,denVgatBasalTerm,synInd)
		}else{
			if(abs(brOrd_id-1)<0.001){
				numAdded = addVgatInhibition(curSec,denVgatBasalPrim,synInd)
			}else{
				if(abs(isTerm_id)){
					numAdded = addVgatInhibition(curSec,denVgatBasalTerm,synInd)
				}else{
					numAdded = addVgatInhibition(curSec,denVgatBasalSec,synInd) // keep as 2ary for time being
				}
			}
		}
		synInd+=numAdded
		nVgatBasal+=numAdded
	}
	// print "The total number of VGAT+ synapses in basals is: ",nVgatBasal
	
	
// Note the number of synapses that were created.
print "The total number of VGAT+ synapses is: ",synInd
totVgatAt = synInd-1